
Classical p-values and the Bayesian posterior probability

that the hypothesis is approximately true

Brendan Kline

Abstract. This paper relates p-values for the hypothesis that θ = c to the Bayesian posterior

probability that the hypothesis is approximately true, in the sense that θ ∈ [c − ϵ, c + ϵ] for

a selected ϵ > 0. In a setup with a continuous prior for θ, the results show that a larger

(respectively, smaller) p-value does not necessarily correspond to a higher (respectively, lower)

probability that θ is close to c. Therefore, the results suggest caution about common ways of

using p-values, specifically the use of small p-values as a key standard in empirical research.
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1. Introduction

This paper is about p-values for the hypothesis θ = c, where θ is a scalar parameter and c

is a known constant (e.g., often c = 0). An important question is how to use p-values to draw

conclusions about θ. For example, one common usage of p-values concerns the case where θ

is a treatment effect, like a regression coefficient. In that case, in practice to establish and

publish an empirical finding that the treatment has an effect on an outcome, it is considered

important to find a small p-value for the hypothesis that the treatment effect is zero. This is

a running example, but the results hold regardless of the meaning of θ.

The results of Edwards, Lindman, and Savage (1963), Berger and Delampady (1987),

Berger and Sellke (1987), Sellke, Bayarri, and Berger (2001), Held and Ott (2016), and Kline
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(2022), as representative of a related literature, establish that it is possible to “calibrate” a

p-value via the corresponding minimum posterior probability that θ = c. In the setup of that

literature, there is a positive prior probability that θ = c, and a class of priors for θ on θ ≠ c.

The “minimum” is taken over this class of priors. Although the p-value is (much) smaller than

the minimum posterior probability, there is a monotone increasing relationship between the

p-value and the minimum posterior probability of the hypothesis that θ = c.12 Essentially, this

literature implies that only very small p-values are enough to “reject” that θ = c. Conversely,

larger p-values correspond to relatively higher minimum posterior probabilities that θ = c.

This provides a Bayesian justification for “rejecting” the hypothesis based on a sufficiently

small p-value, and “not rejecting” the hypothesis based on larger p-values. Put differently,

this provides a justification for using small p-values as a standard for empirical evidence

that θ is unlikely to be equal to c. Indeed, the Benjamin, Berger, Johannesson, Nosek,

Wagenmakers, et al. (2018) proposal to redefine “statistical significance” to be a p-value

smaller than 0.005 is based in part on considerations of how p-values relate to the (minimum)

posterior probability that θ = c. Also, of course, with classical hypothesis testing without any

reference to Bayesian analysis, smaller p-values are interpreted as rejecting the hypothesis,

and larger p-values lead to not rejecting the hypothesis and/or the conclusion that there is

no empirical evidence against the hypothesis.3

In practice, often the empirical question is not whether θ = c is literally true but rather

whether θ is “close” to c. Specifically, consider “ϵ-approximate” hypotheses of the form
1There are many “minimum posterior probabilities” proposed in that literature, based on different classes of
priors over which the minimum is taken, and monotonicity is a shared property.
2Lindley’s paradox (e.g., Jeffreys (1939); Lindley (1957)) establishes conditions for the p-value to be less than
the posterior probability of the hypothesis for a (uniform) single prior on θ ≠ c. A review of the literature on
minimum posterior probabilities can be found in Held and Ott (2018).
3Along similar lines to the case of not rejecting the hypothesis, using a “limited information” posterior that
conditions on the dichotomous event of rejecting (or not) the hypothesis θ = c by classical methods, Abadie
(2020) shows the posterior conditional on not rejecting the hypothesis has much higher probability mass at
θ = c compared to the prior, whereas the posterior conditional on rejecting the hypothesis is not too different
from the prior.
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θ ∈ [c− ϵ, c+ ϵ] for some specified ϵ > 0 chosen by the econometrician.4 An ϵ-approximate

hypothesis is about θ being “close” to c. In the setup with a positive prior probability that

θ = c, it can also be justified to use small p-values as a standard for empirical evidence that θ

is unlikely to be “close” to c, using the same “calibration” of p-values for the hypothesis θ = c.

The reason: when there is positive probability that θ = c and ϵ is small enough, the posterior

probability of θ = c is approximately the same as the posterior probability of θ ∈ [c− ϵ, c+ ϵ].

See Remark 4 for more on this point.

However, particularly in the social sciences, often there is zero prior probability that θ = c.

So, in that setting, how does the p-value relate to the posterior probability that θ is close to

c? In other words, in that setting, is there a (Bayesian) justification for using small p-values

as a key standard for empirical evidence?5 This paper relates p-values for the hypothesis that

θ = c to the Bayesian posterior probability of θ ∈ [c− ϵ, c+ ϵ] in a setup with a continuous

prior, with zero prior probability that θ = c.

The results allow the econometrician to choose any ϵ. ϵ can be a selected constant or

data-dependent. It is possible to interpret ϵ as representing the magnitude of deviations from

θ = c that are viewed as “economically significant.” In particular, because ϵ can be data-

dependent, in the case that θ reflects a treatment effect, ϵ can be taken to be proportionate to

the (estimated) effect of a reference treatment, so that the ϵ-approximate hypothesis relates

to the effect of the treatment under study relative to the reference treatment. Although

“economic significance” is the most plausible determining factor for ϵ, other considerations

are possible; in particular, ϵ is allowed to be data-dependent, which allows for a variety

of specifications. Similar to other hypothesis testing problems, the scaling of the model

parameters is an important consideration; θ, c, and ϵ are all defined in terms of the same

scale (units of measurement).
4It does not matter if the ϵ-approximate hypothesis is defined as a closed interval or open interval.
5In that setting it is not interesting to ask about the posterior probability that θ = c exactly, since that is
necessarily zero.
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The paper derives a closed-form expression for the posterior probability of the ϵ-approximate

hypothesis, as a function of the p-value (and classical estimate of θ). The main results are large

sample approximations, which are valid quite generally in parametric and semiparametric

models when the Bernstein-von Mises phenomenon holds. There are also finite sample results,

based on distributional assumptions on the data generating process and a uniform prior.

The large sample and finite sample results are very similar. Consequently, the results are

not tied specifically to a large sample approximation or finite sample analysis. Then, it is

possible to investigate the relationship between the p-value and the posterior probability of

the ϵ-approximate hypothesis.

As a point about the positioning of this paper, it is important to note that this paper follows

the tradition in econometrics of exploring the properties of the sorts of empirical methods

used in practice and the interpretations that can be applied to them.6 Here the analysis

focuses on the p-value, and interprets and relates that to the ϵ-approximate hypotheses. The

point of this sort of analysis is to investigate the properties of the empirical methods used in

practice. As discussed below, the results have important practical implications, given the use

of p-values. See also Remark 4 for more discussion of possible alternative empirical analyses.

In short, the results of this paper show that a small p-value is neither necessary nor sufficient

for there to be a small posterior probability that θ is close to c. In particular, relatively larger

p-values can correspond to relatively smaller posterior probabilities that θ is close to c.

This has important implications for using and interpreting p-values. As a running example,

if θ is a treatment effect (e.g., a regression coefficient), the results can be used to relate a

p-value for the hypothesis θ = 0 to the probability that the treatment effect is close to 0.
6In a general way, this is similar to how the local average treatment effects literature (e.g., Imbens and Angrist
(1994)) or the recent literature on two-way fixed effects (and related) estimators (e.g., De Chaisemartin and
d’Haultfoeuille (2020), Borusyak, Jaravel, and Spiess (2021), Callaway and Sant’Anna (2021), Goodman-Bacon
(2021), Sun and Abraham (2021), and Athey and Imbens (2022), among others) investigates the meaning of
standard IV estimators or standard TWFE estimators, and how they can be interpreted in relationship to
treatment effect heterogeneity. Because these estimators (like IV or TWFE estimators) are often used in
settings involving treatment effect heterogeneity, an important question concerns how the standard estimators
relate to treatment effect heterogeneity.
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Concretely, close to 0 would mean that θ ∈ [−ϵ, ϵ] for ϵ > 0 chosen by the econometrician. In

this treatment effects setting, the results suggest caution about the practice of using small

p-values as a key standard for empirical evidence, like the standard for finding/publishing an

effect of a treatment on an outcome.7 In particular the results show that a larger (respectively,

smaller) p-value for the hypothesis that the treatment effect is zero does not necessarily

correspond to a higher (respectively, lower) probability that the treatment effect is close to

zero. Comparing two studies, a study reporting a larger p-value can actually have a smaller

posterior probability of a treatment effect that is close to zero. This suggests caution against

using small p-values as a key standard for empirical evidence, as in cutoff rules for determining

“significance.” This contrasts with the previously discussed results from the literature that do

provide justifications for using small p-values as a standard in different settings/setups.

Of particular importance, the results imply the research community can “miss” (e.g., not

publish) treatment effects that are probably not close to zero if the research community only

“accepts” (or focuses on) treatment effects with small p-values for the hypothesis of zero

treatment effect. Formally, “probably not close to zero” refers to (one minus) the probability

of the ϵ-approximate hypothesis. The expressions derived in this paper make it possible

to use a p-value to assess the posterior probability of the ϵ-approximate hypothesis. This

can be viewed as either a complement or substitute to the standard approach of reporting

p-values in empirical research; in particular, it is possible to use these expressions to assess

the posterior probability of the ϵ-approximate hypothesis from previous research even without

access to the original data, in the sense that the expressions depend only on quantities that

are conventionally reported in research.

These results contribute to the broader discussion surrounding the use of p-values, including

a statement by the American Statistical Association in Wasserstein and Lazar (2016), comment
7It is clear that standards for empirical research are such that a small p-value is important. Some evidence is
that Masicampo and Lalande (2012), Leggett, Thomas, Loetscher, and Nicholls (2013), and Brodeur, Lé,
Sangnier, and Zylberberg (2016) find high prevalence of p-values around and just below the “significance
cutoff” of 0.05.
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in Nature in Amrhein, Greenland, and McShane (2019), and various statements on p-values

at specific journals or for specific fields (e.g., Trafimow and Marks (2015), Harvey (2017), Gill

(2018), Harrington, D’Agostino Sr, Gatsonis, Hogan, Hunter, Normand, Drazen, and Hamel

(2019)). The results also contribute to related literatures that relate classical inference and

Bayesian inference in other ways, including Liao and Jiang (2010), Kline (2011), Moon and

Schorfheide (2012), Kline and Tamer (2016), Chen, Christensen, and Tamer (2018), Gafarov,

Meier, and Montiel Olea (2018), Liao and Simoni (2019), and Giacomini and Kitagawa (2021)

for partially identified models and Chernozhukov and Hong (2003), Kitagawa, Montiel Olea,

Payne, and Velez (2020), and Liu, Li, Yu, and Zeng (2022) for relating classical inference

results to (quasi) Bayesian approaches.

1.1. Notation. Notation is standard. The m×m identity matrix is Im×m. The Lp norm of

x ∈ Rm is ||x||p. Let δΣ,2(x, y) = ||Σ− 1
2 (x− y)||2 for a positive definite Σ. The total variation

distance between random variables X and Y is ||X − Y ||TV . For a sequence XN , XN →p X

means converges in probability to X and XN →d X means converges in distribution to X.

The indicator 1[E] of logical statement E is 1 when E is true and 0 otherwise. As convention,

z1[false] = 0; for example, x
y
1[y ̸= 0] = 0 when y = 0. A multivariate normal distribution with

mean µ and covariance Σ is N (µ,Σ). A (central) chi-squared distribution with m degrees

of freedom is χ2
m. A noncentral chi-squared distribution with m degrees of freedom and

non-centrality parameter λ is χ2
m,λ.8 For a random variable X, the cumulative distribution

function is FX(·), the quantile function is QX(·), the complementary cumulative distribution

function is FX(·) ≡ 1 − FX(·), and X(B) ≡ P (X ∈ B).

2. Setup

The data is a sample of N i.i.d. observations from P0, the true data generating process,

so the data is X(N) ≡ {Xi}Ni=1 where Xi ∼iid P0. There also is a statistical model, where
8This paper uses the parameterization where E(χ2

m,λ) = m + λ.
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ψ = (θ, γ2, . . . , γt, . . . , γm) is the finite-dimensional parameter of the model, with parameter

space Ψ ⊆ Rm for some m. The true value of ψ is ψ0. The p-values and posterior probabilities

will concern the scalar parameter of interest θ.

The “statistical model” can be a fully parametric model or a semi-parametric model.

Specifically, per Remark 1 about semi-parametric models, there can be infinite-dimensional

nuisance parameters. Overall, the analysis proceeds by making a high-level assumption on

the classical estimator and posterior distribution, which is known to hold across a variety

of types of models. As a consequence, the setup does not need to specify the use of any

particular statistical model. As a further consequence, the analysis applies both to parametric

and semi-parametric models, and in either case, the analysis applies to the scalar parameter

of interest θ.

Specifically, the analysis presumes there is a classical (“frequentist”) estimator ψ̂N =

(θ̂N , γ̂N,2, . . . , γ̂N,t, . . . , γ̂N,m) of ψ, which is the basis for the p-value. Also there is a Bayesian

posterior for ψ, denoted Πψ|X(N)(·) so Πψ|X(N)(A) is the posterior probability that ψ ∈ A

conditional on the data. Sometimes, rather than Πψ|X(N)(A), the equivalent notation Π(ψ ∈

A|X(N)) is used.

It is worth observing that the posterior in this paper conditions on the entire dataset, so

this paper relates p-values to a conventional Bayesian analysis based on the entire dataset.

A potential alternative analysis would analyze a “non-standard” posterior that conditions

on “less” information, as discussed for instance in Footnote 3. Although reasonable, by

construction this would not correspond to the “standard” posterior the Bayesian would get

from analyzing the data in the “standard” way, and as such, that approach is not taken here.

3. Large sample approximation results

This section establishes the large sample approximation results that relate the p-value

for the hypothesis that θ = c to Π(θ ∈ [c − ϵ, c + ϵ]|X(N)). The latter is the Bayesian

posterior probability that the hypothesis is approximately true. Intuitively, the large sample
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approximation established in this section is a function πc,ϵ(pN , θ̂N), that depends on the

p-value and the classical estimate θ̂N , such that Π(θ ∈ [c− ϵ, c+ ϵ]|X(N)) ≈ πc,ϵ(pN , θ̂N) in

large samples. Both Π(θ ∈ [c− ϵ, c+ ϵ]|X(N)) and πc,ϵ(pN , θ̂N) are functions of X(N).

More formally, the large sample approximation establishes that, for any given δ > 0, the P0-

probability of the set of realizationsX(N) such that
∣∣∣Π(θ ∈ [c− ϵ, c+ ϵ]|X(N)) − πc,ϵ(pN , θ̂N)

∣∣∣ <
δ approaches one as sample size increases. In other words, Π(θ ∈ [c − ϵ, c + ϵ]|X(N)) ≈

πc,ϵ(pN , θ̂N) for all but an exceptional set of realizations X(N), and the P0-probability of the

exceptional set decreases to zero as sample size increases.

This large sample approximation is a statement that applies to realizations X(N) from

P0, assuming that X(N) is an i.i.d. sample from P0, as is the case with other large sample

approximations of Bayesian posteriors (e.g., Van der Vaart (1998, Chapter 10)). The P0

distribution is used both as the underlying data generating process, and to “measure” the

set of realizations X(N) where the approximation holds. Although the derivation of the

p-value involves repeating sampling considerations, from the point of view of the large sample

approximation of the Bayesian posterior, the p-value is simply a particular function of the

realization X(N) in the same way that the Bayesian posterior is a particular function of the

realization X(N). Large sample approximations of Bayesian posteriors can be distinguished

from the classical repeating sampling approximations used in frequentist analysis, as those

concern the distribution of an estimator that is induced by the sampling process.

The large sample approximation results are based on an assumption about the relationship

between the sampling distribution of ψ̂N and the posterior distribution for ψ.

Assumption 1. It holds that:

(1) The classical estimator ψ̂N is asymptotically normal, in the sense that
√
N(ψ̂N −

ψ0) →d N (0,Σ0) where Σ0 is nonsingular. There is a consistent estimator Σ̂N of Σ0.

(2) The Bayesian posterior for ψ is asymptotically normal, in the sense that ||Π√
N(ψ−ψ̂N )|X(N)−

N (0,Σ0)||TV →p 0.
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The analysis treats Σ0 as an unknown quantity, with corresponding estimate Σ̂N . A

possible alternative analysis is the known Σ0 case. Because Σ0 typically depends on unknown

model parameters, it is unlikely that Σ0 would be known in empirical practice, so it must be

estimated using the data. Further, the known Σ0 case is not particularly interesting from

the perspective of this paper: If Σ0 were known, then θ̂N (implicitly along with N and c)

would be enough information to compute the p-value, and therefore reporting a p-value would

convey no additional information beyond the information from reporting θ̂N . But, when Σ0

is unknown, as in empirical practice, the p-value does contain additional information beyond

θ̂N , which justifies the empirical practice of reporting p-values in addition to θ̂N . Indeed, a

key driving force of the results is that the p-value contains information about Σ0. This is

relevant information since the posterior distribution depends on Σ0. This condition on the

covariance corresponds also to the analogous condition on the posterior used in the finite

sample results in Section 6. This provides another intuition for why this condition on the

covariance is used; in the finite sample results, it arises because of the unknown (co)variance

of the underlying data generating process. Correspondingly, essentially the same condition

also holds “in the limit” in the large sample approximation.

Assumption 1 holds as the consequence of theorems commonly known as “Bernstein-von

Mises theorem(s).” The following remark quickly summarizes settings where the “Bernstein-

von Mises theorem(s)” hold. The results of this section apply to those settings.

Remark 1 (Sufficient conditions for Assumption 1). Assumption 1 holds in these settings:

(1) Parametric model: Consider a parametric model Pψ with finite-dimensional pa-

rameter ψ. Then P0 = Pψ0 , where ψ0 is the true value. Often, ψ̂N is the maximum

likelihood estimate of ψ, and Σ0 the inverse Fisher information matrix. The prior for

ψ must have a continuous and positive density on a neighborhood of ψ0. Under a

few further regularity conditions, the parametric Bernstein-von Mises results (e.g.,

Le Cam (1986, Chapter 12), Van der Vaart (1998, Chapter 10), Le Cam and Yang
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(2000, Chapter 8)) imply Assumption 1 is satisfied. The regularity conditions are

similar to those used in the familiar approaches to asymptotic normality of parametric

maximum likelihood estimation, see for instance the discussion in Van der Vaart (1998,

Chapter 10). Although there are different ways to state these regularity conditions,

they generally involve identifiability of the model, differentiability in quadratic mean

or local asymptotic normality, and a separation condition which itself can be shown

to follow from regularity conditions like compactness of the parameter space and

continuity of Pψ as a function of ψ.

(2) Semi-parametric model: Consider a semi-parametric model Pψ,η with finite-

dimensional parameter ψ and infinite-dimensional parameter η. Then P0 = Pψ0,η0 ,

where (ψ0, η0) is the true value. Often, ψ̂N can be taken to be an asymptotically

linear and efficient estimator of ψ, and Σ0 the inverse efficient Fisher information

matrix. The marginal prior for ψ must have a continuous and positive density on a

neighborhood of ψ0. Under a few further regularity conditions, the semi-parametric

Bernstein-von Mises results (e.g., Shen (2002), Bickel and Kleijn (2012), Castillo

(2012), Castillo and Rousseau (2015)) imply Assumption 1 is satisfied. The regular-

ity conditions generally are semi-parametric parallels to the regularity assumptions

mentioned above. See for instance the discussion in Rousseau (2016).

Overall, the results in this section are large sample approximations, for any setup compatible

with Assumption 1. Remark 1 is not a comprehensive review. There are Bernstein-von

Mises results that cover certain nonparametric models (e.g., Castillo and Nickl (2013)), and

important specific models, including limited information and moment condition models (e.g.,

Kwan (1999), Kim (2002), and Chib, Shin, and Simoni (2018)), linear and partially linear

regressions (e.g., Bickel and Kleijn (2012) and Norets (2015)) proportional hazard models

(e.g., Kim (2006)), and models with quasi-posteriors (e.g., Chernozhukov and Hong (2003)).
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Assumption 1 may not hold if the model is misspecified as in Kleijn and Van der Vaart (2012)

and Müller (2013).

Remark 2 (Parameter of interest is a function of ψ). Suppose Assumption 1 holds, but the

parameter of interest is ψ̃ ∈ R1 with ψ̃ = f(ψ) for some known function f(·) : Rm → R1 that

is continuously differentiable at ψ0. Suppose the (1 ×m)-matrix of first derivatives of f(·)

is F (·), and F (ψ0) is non-zero. The delta theorem (e.g., Van der Vaart (1998, Chapter 3),

Wasserman (2004)) implies that Assumption 1 holds for ψ̃, with ψ̂N replaced by f(ψ̂N), ψ0

replaced by f(ψ0), ψ replaced by f(ψ), and Σ0 replaced by F (ψ0)Σ0F (ψ0)′. Therefore, the

results apply to a parameter of interest that is a continuously differentiable function of a

parameter that satisfies Assumption 1.

The Wald test is the classical method for testing the hypothesis θ = c. The Wald test

statistic is

WN = N(θ̂N − c)′(Σ̂N,11)−1(θ̂N − c).

By Assumption 1, if the hypothesis θ = c is true, WN converges in distribution to χ2
1.

Therefore, the p-value for the hypothesis that θ = c is

pN = P (χ2
1 > WN) = F χ2

1
(WN).

Theorem 1. Under Assumption 1, and when the p-value is not 1,9 for any ϵ > 0 cho-

sen by the econometrician (possibly data-dependent per Remark 5), the Bayesian poste-

rior probability of the ϵ-approximate hypothesis that θ ∈ [c − ϵ, c + ϵ] is approximately

Fχ2
1,Q

χ2
1

(1−pN )

(
ϵ2

|θ̂N −c|2Qχ2
1
(1 − pN)

)
in large samples. Formally,

(
Π
(
θ ∈ [c− ϵ, c+ ϵ]|X(N)

)
− Fχ2

1,Q
χ2

1
(1−pN )

(
ϵ2

|θ̂N − c|2
Qχ2

1
(1 − pN)

))
1[pN < 1] →p 0.

9pN = 1 exactly happens with asymptotic probability 0, and finite sample probability 0 with a continuous
sampling distribution, so this “exclusion” is irrelevant formally in the asymptotic approximation and also for
all practical purposes. Relatedly, pN = 0 exactly cannot happen.
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All proofs are collected in Appendix A, part of the main paper. Theorem 1 relates the

p-value to the posterior probability of the ϵ-approximate hypothesis. Figure 1 displays the

contour plot of the posterior probability of the ϵ-approximate hypothesis as a function of the

p-value and |θ̂N −c|
ϵ

. The latter quantity depends on ϵ. To illustrate by example, if |θ̂N −c|
ϵ

= 1.5

and the p-value is 0.05, Figure 1 indicates the posterior probability of the ϵ-approximate

hypothesis is 0.2562. Note that because Σ0 is unknown (and therefore must be estimated), θ̂N

(and c and ϵ) does not uniquely determine the p-value. The figures in this paper have axes that

are truncated away from p-values of 0 and 1 and away from values of |θ̂N −c|
ϵ

of 0 for the same

reason as described in Footnote 9. This has no meaningful impact on the interpretation of the

figures. For values outside this range, the formula in the theorem can be used. For a different

perspective, Figure 2 displays the posterior probability of the ϵ-approximate hypothesis as a

function of the p-value, for various values of |θ̂N −c|
ϵ

. Some of the qualitative features revealed

in Figure 2 have corresponding theoretical results in Corollary 1 and Corollary 2.

It may be tempting to think that somehow this result is an asymptotic curiosity, but

Section 6 shows essentially the same result obtains also in a finite sample analysis. Therefore,

the main point of this paper is not tied to a particular setup (e.g., “asymptotic approximation”

or “finite sample”) but rather a general feature of p-values. The analysis of the large sample

approximation reduces the dependence on a particular model setup or prior distribution, but

the large sample approximation is not the “reason” for the result, since essentially the same

result arises in the finite sample analysis. Along similar lines, it is worth noting that the

large sample approximation in Theorem 1 and Figure 1 exists as a non-degenerate quantity

as a direct implication of the non-degenerate large sample approximation in Assumption

1. Of course, per consistency of the posterior distribution, the posterior distribution of ψ

itself converges to a point mass at ψ0; however, the posterior distribution of
√
N(ψ − ψ̂N)

does not converge to a point mass, per Assumption 1. Using the large sample approximation

to the posterior distribution of
√
N(ψ − ψ̂N), it is possible to have non-degenerate large
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Figure 1. Posterior probability of the ϵ-approximate hypothesis that θ ∈ [c−
ϵ, c+ϵ] for given p-value and |θ̂N −c|

ϵ
according to the large sample approximation.

sample approximations to the posterior distribution of ψ. By way of comparison to a more

familiar situation with sampling distributions, this is analogous to how the large sample

approximation to the sampling distribution of
√
N(ψ̂N − ψ0) is non-degenerate, making it

possible to have non-degenerate large sample approximations to the sampling distribution

of ψ̂N , which in particular form the basis of standard approaches to hypothesis testing. In

particular, it may be worth noting that the formula for the p-value depends on sample size,

and therefore the large sample approximation derived here does indeed involve the typical

“scaling” by sample size, since the large sample approximations are functions of the p-value

that depends on sample size.
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Figure 2. Posterior probability of the ϵ-approximate hypothesis that θ ∈
[c − ϵ, c + ϵ] as function of p-value, for various |θ̂N −c|

ϵ
, according to the large

sample approximation.

Shortly, Section 4 discusses the main implications of this result for using p-values in practice.

Before getting there, it is worthwhile to discuss a few intermediate implications of this result.

One implication of this result is that it shows the posterior probability of the ϵ-approximate

hypothesis depends on θ̂N . The p-value by itself is not determinative of the posterior

probability of the ϵ-approximate hypothesis. This contrasts with the fact that the p-value by

itself is used to decide on rejecting or not the hypothesis that θ = c by classical standards, or

other “cutoff rules” for significance like Benjamin, Berger, Johannesson, Nosek, Wagenmakers,

et al. (2018), and the fact that the minimum posterior probability of the hypothesis that
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θ = c discussed in the introduction depends only on the p-value (and also the discussion of a

related relationship for the ϵ-approximate hypothesis in that setup).

Another implication of this result concerns the relationship between the posterior probability

of the ϵ-approximate hypothesis and the p-value.

First, consider the case that the classical estimate provides “evidence against” the ϵ-

approximate hypothesis, in the sense that θ̂N /∈ [c − ϵ, c + ϵ], equivalent to |θ̂N −c|
ϵ

> 1.

Corollary 1 shows in that case that there is a non-monotone relationship between the p-value

and the posterior probability of the ϵ-approximate hypothesis, even for given θ̂N . This can

be seen in Figure 1 and Figure 2. Both small p-values and large p-values correspond to a

small posterior probability of the ϵ-approximate hypothesis. This contrasts with the fact

that small p-values lead to rejecting the hypothesis that θ = c and large p-values do not,

whether by classical standards or other “cutoff rules” for significance, and the fact that there

is a monotone relationship between the p-value and the minimum posterior probability of

the hypothesis that θ = c. A large p-value can mean that the ϵ-approximate hypothesis is

unlikely to be true, because values of the parameter other than the ϵ-approximate hypothesis

values are more likely. Essentially, this effect is driven by what the p-value says about the

variance of the posterior, which in turn affects the posterior probability of the ϵ-approximate

hypothesis.

Corollary 1. Under the same conditions as Theorem 1, for fixed θ̂N with |θ̂N −c|
ϵ

> 1: The

asymptotic approximation to the posterior probability that θ ∈ [c − ϵ, c + ϵ] is maximal

(as a function of pN) when pN = pN,max, where pN,max = F χ2
1

(
1

2
√
ϵ̃N

log
(

−
√
ϵ̃N −1√
ϵ̃N −1

))
with

ϵ̃N = ϵ2

|θ̂N −c|2 . The asymptotic approximation to the posterior probability of the ϵ-approximate

hypothesis is an increasing function of pN when pN ∈ (0, pN,max) and a decreasing function

of pN when pN ∈ (pN,max, 1). As pN → 0 or pN → 1, the asymptotic approximation to the

posterior probability of the ϵ-approximate hypothesis limits to 0.
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Second, now consider the case that the classical estimate provides “evidence for” the

ϵ-approximate hypothesis, in the sense that θ̂N ∈ [c − ϵ, c + ϵ], equivalent to |θ̂N −c|
ϵ

≤ 1.10

Corollary 2 shows in that case that the probability of the ϵ-approximate hypothesis is greatest

when the p-value is smallest, for given θ̂N . This can be easily seen in Figure 1 and Figure 2.

Obviously, this is the exact opposite of common practice, where small p-values are used to

reject the hypothesis.

Corollary 2. Under the same conditions as Theorem 1, for fixed θ̂N with 0 < |θ̂N −c|
ϵ

≤ 1:

The asymptotic approximation to the posterior probability that θ ∈ [c− ϵ, c+ ϵ] is a decreasing

function of pN . As pN → 1, the asymptotic approximation to the posterior probability of

the ϵ-approximate hypothesis limits to 0. As pN → 0, the asymptotic approximation to the

posterior probability of the ϵ-approximate hypothesis limits11 to 1 unless |θ̂N −c|
ϵ

= 1 in which

case the limit is 1
2 .

The general question of the relative merits of classical inference and Bayesian inference is

substantially beyond the scope of this paper, but Efron (1986) suggests overall that there are

“powerful theoretical reasons for preferring Bayesian inference.” One such argument concerns

the likelihood principle (e.g., Birnbaum (1962)) and its perceived support for Bayesian

inference (e.g., Berger and Wolpert (1988)). Another such argument concerns decision theory

and subjective probability foundations (e.g., de Finetti (1970, 1975); Savage (1954, 1972)).

Such arguments in favor of Bayesian inference are the underpinning of the motivation for

studying the question considered in this paper, as well as the related literature cited in the

introduction, as they provide the basic justification for wanting to know what a Bayesian

inference would conclude. A researcher who is even partly convinced by the arguments in

favor of Bayesian inference can find it important to know how the Bayesian conclusion differs
10Again, per Theorem 1, the (asymptotically) probability 0 - and thus irrelevant for practical purposes - event
that θ̂N = c exactly is excluded from the results/discussion.
11This is a bit difficult to see in Figure 1 since the posterior probability is “close” to 1 only for extremely
small pN , for some |θ̂N −c|

ϵ .
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from the classical conclusion. Of course, Bayesian inference can also be criticized, for example

along the lines outlined by Efron (1986), which include concerns about implementing Bayesian

inference in practice and concerns about the “objectivity” of Bayesian inference due to the

use of a prior distribution. These concerns are contextual to any particular application of

Bayesian inference. And, as it turns out, those concerns apply in only a somewhat limited

degree to the analysis done in this paper, since this paper indeed does do the Bayesian

inference (addressing the concern about implementation in practice) and since this paper

uses a large sample approximation (which sidesteps the issues about the prior distribution,

as discussed above).

4. Implications of the results for the use of p-values in practice

The results suggest caution against the use of small p-values as a key standard in empirical

research, including via p-value cutoff rules for “significance.” The results of this paper show

that a small p-value is neither necessary nor sufficient for there to be a small posterior

probability that θ is close to c. On the other hand, it is possible to use the expressions derived

in this paper to assess the posterior probability that θ is close to c. This can be done even

without access to the original data, since the expressions can be applied to a reported p-value

and classical estimate.

To illustrate by a numerical example, suppose θ is the effect of a treatment on an outcome,

like a regression coefficient, and the p-value is for the hypothesis θ = 0. For this example,

a “close to zero” effect is any effect in [−0.1, 0.1], so ϵ = 0.1. Nothing changes if θ and ϵ

are scaled by the same positive constant. Consider these specifications for the p-value and

classical estimate of the effect: (p = 0.04, θ̂ = 0.12) and (p = 0.11, θ̂ = 0.14). The first

specification has a smaller p-value, which has the familiar implications: it implies the first

specification has a smaller minimum posterior probability that the effect is zero, and it implies

rejecting the hypothesis that the effect is zero by classical standards for the first specification.

The p-value for the second specification does not achieve “statistical significance” and so it
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might be difficult to “sell”/publish such a result. It might be said that the second specification

shows a “lack of evidence” against the hypothesis that the treatment effect is (close to) zero.

Yet, the first specification implies a 36.6% posterior probability of an effect that is close to

zero, greater than the 32.1% implied by the second specification. There is a similar analysis

for innumerable other specifications, like (p = 0.04, θ̂ = 0.20) and (p = 0.11, θ̂ = 0.26) for

example, where the posterior probabilities of an effect that is close to zero are respectively

15.1% and 14.9%. There are innumerable other such comparisons, with the footnote giving

a few more examples.12 In these comparisons, the specification with the larger p-value has

a smaller (or equal) probability of the treatment effect being close to zero. Of course, in

other comparisons, the specification with the larger p-value has a larger probability of the

treatment effect being close to zero.

This illustrates why the results suggest caution about the practice of using small p-values

as a key standard for empirical research. A larger (respectively, smaller) p-value does

not necessarily correspond to a higher (respectively, lower) probability that θ is close to

c. Comparing two studies, a study reporting a larger p-value can actually have a smaller

posterior probability of a treatment effect that is close to 0. In particular, this shows that the

research community can “miss” (e.g., not publish) treatment effects that are probably not

close to zero if the research community only “accepts” (or focuses on) treatment effects with

small p-values for the hypothesis of zero treatment effect. In particular, contrary to common

usage, a larger p-value (“not rejecting”) does not mean that there is a lack of evidence against

the hypothesis that the treatment effect is (close to) zero. Rather than evaluate research

based on the p-value, it is possible to use the expressions derived in this paper to assess the
12Consider these comparisons where the first specification has the smaller p-value, which implies rejecting
the hypothesis that the effect is zero by classical standards and a smaller minimum posterior probability
that the effect is zero. Compare (p = 0.04, θ̂ = 0.16) and (p = 0.11, θ̂ = 0.24): the respective posterior
probabilities that the treatment effect is close to zero are 22.0% and 16.4%. Compare (p = 0.04, θ̂ = 0.12) and
(p = 0.90, θ̂ = 0.12): the respective posterior probabilities that the treatment effect is close to zero are 36.6%
and 8.3%. Compare (p = 0.0001, θ̂ = 0.08) and (p = 0.11, θ̂ = 0.12): the respective posterior probabilities
that the treatment effect is close to zero are 83.5% and 39.3%.



p-VALUES AND APPROXIMATE HYPOTHESES 19

posterior probability that θ is close to c, which indeed is precisely what was done in this

section. These remarks are general to empirical research, as a general feature of p-values,

and are not particularly tied to the features of any specific empirical question or literature.

Remark 3 (Confidence intervals and standard errors). Some journals are now either recom-

mending or requiring the use of alternative inferential statistics. For instance, the journals

published by the American Economic Association (i.e., the American Economic Review,

the American Economic Review: Insights, and the four American Economic Journals) and

Econometrica and Quantitative Economics all ask authors to report standard errors, and not

use asterisks to indicate statistical significance. Econometrica and Quantitative Economics

further asks authors to report confidence intervals or coverage sets.13 Despite these prominent

examples, which may represent the beginning of a general shifting of standards, currently

journal policies against the use of p-values or statistical significance appear to be relatively

rare overall in the scientific literature, per Hardwicke, Salholz-Hillel, Malički, Szűcs, Bendixen,

and Ioannidis (2023).

Shifting from reporting p-values to reporting standard errors and/or confidence intervals

does not avoid the problem with p-values. Reporting a p-value is “equivalent” to reporting a

confidence interval, which in turn is “equivalent” to reporting a standard error, in the sense

that any one such inferential quantity can be converted to the other inferential quantities, and

therefore reporting any one of them conveys exactly the same information to the reader.14 Of

course, it is not clear necessarily how every reader uses and interprets these other inferential

quantities, but it seems clear that many readers use them in a way that directly parallels
13All of this is clear from the online submission guidelines.
14This is because of the ability to convert between p-values for θ = c and confidence intervals for θ and standard
errors for θ̂N , for given θ̂N . A 1−α confidence interval has the form [θ̂N −c.v.α ×s.e.(θ̂N ), θ̂N +c.v.α ×s.e.(θ̂N )],
where c.v.α is the appropriate critical value. This relationship allows a reader to convert between the confidence
interval and the standard error, for given θ̂N , so reporting a confidence interval conveys exactly the same
information as does reporting a standard error. Further, the standard formula for the p-value gives a
relationship that allows a reader to convert between the p-value and the standard error, for given θ̂N , so
reporting a p-value conveys exactly the same information as does reporting a standard error.
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the use of p-values discussed throughout this paper, and therefore shares the same issues

concerning the use of p-value that have been the focus of this paper.

It seems there are two ways that typical readers tend to use standard errors. First, a reader

might think about the relative magnitude of θ̂N compared to the standard error. Specifically,

a reader might think about whether the relative magnitude exceeds 1.96, which of course

is equivalent to checking whether the p-value is less than 0.05. And, therefore, this use of

standard errors results in the same issues concerning the use of p-values that have been the

focus of this paper.

Alternatively, a reader can use a standard error to compute a confidence interval. For

instance, a reader might think about (roughly what happens when) adding/subtracting a

multiple (e.g., 1.96) of the standard error to/from θ̂N . Then, a reader might think about

whether c is contained within the confidence interval. This use of standard errors also is

effectively the same as checking whether the p-value is less than the significance level that

corresponds to the level of the confidence interval, which again results in the same issues

concerning the use of p-values that have been the focus of this paper.

More generally, the results and discussions also apply to the relationship between confidence

intervals and posterior probabilities of ϵ-approximate hypotheses. To illustrate the same

issues arise, consider these specifications of 95% confidence intervals for a treatment effect:

[0.0657, 0.1704], [0.0324, 0.2386], [0.0180, 0.2681], [−0.0193, 0.3425], [−0.0648, 0.4230]. Clearly,

these are increasingly large (and nested) 95% confidence intervals. In order, the associated

p-values for the hypothesis of zero treatment effect range from 0.00001 to 0.15. By the

application of common empirical standards, essentially the same used above for p-values,

the first specification easily meets the standard for statistical significance and rejecting the

hypothesis that the treatment effect is zero, whereas the last specification does not achieve

statistical significance and so it might be comparatively difficult to “sell”/publish as evidence

of an effect. Because of the failure to reject the hypothesis of zero treatment effect, it
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might be said that the last specification shows “lack of evidence” against the hypothesis that

the treatment effect is zero. What would be the corresponding posterior probabilities that

the treatment effect is close to zero, which as before is defined for this example to be an

effect in [−0.1, 0.1]? Actually, the posterior probabilities that the treatment effect is close

to zero are exactly the same for these specifications: 25%. This reflects exactly the same

issues discussed previously about p-values, because of the relationship between p-values and

confidence intervals.

Remark 4 (Other approaches). This remark is about other approaches. Another case is

when there is positive prior probability of θ = c. As discussed in the Introduction, this case

seems rare in empirical work in the social sciences. Nevertheless, this case can be analyzed. In

this case, the posterior probability of θ ∈ [c− ϵ, c+ ϵ] with ϵ small is approximately the same

as the posterior probability of the hypothesis θ = c (e.g., Berger and Sellke (1987, Section

4)). Therefore, results for the minimum posterior probability of the hypothesis θ = c and

of the hypothesis θ ∈ [c− ϵ, c+ ϵ] with ϵ small are basically the same in this setup. In fact,

this is part of the motivation for the literature on minimum posterior probabilities to study

the (minimum) posterior probability of θ = c, understanding it can be an approximation to

the (minimum) posterior probability that θ ∈ [c− ϵ, c+ ϵ]. See for example the discussion

in Berger and Sellke (1987). As mentioned in the Introduction, this means that the use of

small p-values as a key standard, including p-value cutoff rules for significance like the one

suggested by Benjamin, Berger, Johannesson, Nosek, Wagenmakers, et al. (2018), can be

justified from a Bayesian perspective even if the empirical question is whether θ is close to c,

when there is positive prior probability that θ = c.

This paper studies the p-value for the hypothesis θ = c, precisely because that is what

is used in empirical practice, but one could in principle conduct a classical hypothesis test

of the ϵ-approximate hypothesis (when ϵ is not data-dependent). In the appendix, Abadie

(2020) studies the informativeness of rejecting or not rejecting the hypothesis θ ∈ [c− ϵ, c+ ϵ]
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by such a classical hypothesis test. In large samples, Abadie (2020)’s results imply the

posterior probability of the ϵ-approximate hypothesis is 1 conditional on not rejecting and is

0 conditional on rejecting.

Or, it is possible to conduct a classical hypothesis test of the one-sided hypothesis that

θ ≥ c. In contrast to the motivating results cited in the introduction that concern the

“calibration” of a p-value via the minimum posterior probability when the hypothesis is θ = 0,

when the hypothesis is θ ≥ 0, Casella and Berger (1987) show that the p-value for θ ≥ c can

exactly equal the minimum posterior probability that θ ≥ c for certain classes of priors. Also,

in an asymptotic setup similar to that used in this paper, Kline (2011) shows the same result.

The emphasis on the posterior probability of the ϵ-approximate hypothesis follows the

related literature that also focuses on the posterior probability of certain hypotheses. However,

it is possible to use these results to analyze other quantities; for instance, the posterior odds

ratio is simply a (monotone) function of the posterior probability of the hypothesis.

Remark 5 (Data-dependent ϵ). ϵ can be data-dependent. For example, in a regression

setting (with c = 0), ϵ can be a multiple λ of the estimated coefficient β̂ on a “reference”

explanatory variable. The ϵ-approximate hypothesis would be θ ∈ [−λ|β̂|, λ|β̂|], meaning the

effect of one explanatory variable is “close to 0” if it is sufficiently closer to 0 compared to

the effect of the “reference” explanatory variable. More specifically, consider as an example

the case that θ reflects the treatment effect of a novel treatment, when the outcome is known

already in the literature to be impacted by other “reference” treatments. Consider a regression

model that includes both the novel treatment and one such “reference” treatment. ϵ can be

selected to be proportionate to the estimated treatment effect of the reference treatment, so

the ϵ-approximate hypothesis concerns whether or not the novel treatment has an effect that

is at least a pre-specified percentage of the effect of the reference treatment. If so, the novel

treatment can be said to have an “economically significant” effect, specifically relative to the

effect of this reference treatment. Other choices of ϵ are allowed, including fixed constants as
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in the numerical example above. Another illustration of the choice of ϵ is provided in the

empirical application in Section 5.

Remark 6 (Repeated sampling behavior). Another perspective comes from inspecting the

repeated sampling behavior of the posterior probability of the ϵ-approximate hypothesis. The

(large sample approximation to the) posterior probability of the ϵ-approximate hypothesis is

a function of θ̂N and the p-value. Based on a given data generating process, it is possible

to generate a sampling distribution of draws of θ̂N and the p-value, and for each such

draw, compute the associated posterior probability of the ϵ-approximate hypothesis, thereby

generating a sampling distribution of the posterior probability of the ϵ-approximate hypothesis.

Consider specifically the case that Xi ∼iid N (θ0, σ
2
0), with θ̂N the associated sample average,

based on N = 500. This data generating process is considered in the finite sample results in

Section 6. The posterior probability of the ϵ-approximate hypothesis reported here comes

from the finite sample results, but as discussed in Section 6, the results would be nearly

identical numerically if the asymptotic approximation to the posterior probability were to be

used. As in the above discussion, ϵ = 0.1 for these calculations. The results are displayed in

Figure 3.

Suppose first that θ0 = 0 and σ2
0 = 1. Among the draws from the sampling distribution that

“achieve statistical significance” with a p-value of 0.05 or below, considering the associated

(conditional) sampling distribution of the posterior probability of the ϵ-approximate hypothesis,

the 1st quantile is 0.11 and the 99th quantile is 0.64. There is a range both because a range of

p-values is considered and because the posterior probability depends on θ̂N , even for a given

p-value. The quantiles of the sampling distribution are reported, rather than the support of

the sampling distribution, because the sampling distribution has a particularly long tail of

“unlikely” but extreme values of the posterior probabilities, a consequence of the expression

for the posterior probability and the support of θ̂N and the p-value.
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(a) θ0 = 0 (b) θ0 = 0.14

Figure 3. Repeated sampling density of the posterior probability of the ϵ-
approximate hypothesis that θ ∈ [−0.1, 0.1].

Alternatively, suppose that θ0 = 0 and σ2
0 = 10. For these purposes, an increase in σ2

0 is

similar to a decrease in N . Now, among the draws from the sampling distribution that “achieve

statistical significance” with a p-value of 0.05 or below, considering the associated (conditional)

sampling distribution of the posterior probability of the ϵ-approximate hypothesis, the 1st

quantile is essentially 0 and the 99th quantile is 0.10.

This further illustrates, now in this repeated sampling sense, that caution is warranted

about using “statistical significance” as a key standard in empirical research. Even just from

these two data generating processes, out of the universe of data generating processes that could

have generated the data, “statistical significance” is associated (in this repeated sampling

sense) with a substantial range of associated posterior probabilities of the ϵ-approximate

hypothesis.

Further, among the draws from the sampling distribution when σ2
0 = 1 that do not “achieve

statistical significance” with a p-value of above 0.05, considering the associated (conditional)

sampling distribution of the posterior probability of the ϵ-approximate hypothesis, the 1st

quantile is 0.64 and the 99th quantile is 0.98.
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And among the draws from the sampling distribution when σ2
0 = 10 that do not “achieve

statistical significance” with a p-value of above 0.05, considering the associated (conditional)

sampling distribution of the posterior probability of the ϵ-approximate hypothesis, the 1st

quantile is 0.11 and the 99th quantile is 0.54.

Thus, as also evident from Figure 3, the sampling distribution of the posterior probability

of the ϵ-approximate hypothesis “without statistical significance” when σ2
0 = 10 tends actually

to have somewhat smaller values, compared to the sampling distribution of the posterior

probability of the ϵ-approximate hypothesis “with statistical significance” when σ2
0 = 1. This

further illustrates that caution is warranted about using “statistical significance” as a key

standard in empirical research. Although this discussion has focused on just two possible data

generating processes, the basic idea would apply more broadly. Indeed, including additional

data generating processes in the universe that are considered would further exacerbate the

issues discussed above with just two data generating processes. For instance, this is apparent

from panel 3b, which shows the case for θ0 = 0.14, where the sampling distribution of the

posterior probability of the ϵ-approximate hypothesis tends to have smaller values compared

to what happens when θ0 = 0, for any given combination of σ2
0 and “statistical significance”

(or not).

5. Empirical application

To further illustrate the results, this section presents an application of the results to

published research from psychology in Open Science Collaboration (2015) and economics in

Camerer, Dreber, Forsell, Ho, Huber, Johannesson, Kirchler, Almenberg, Altmejd, Chan,

Heikensten, Holzmeister, Imai, Isaksson, Nave, Pfeiffer, Razen, and Wu (2016). The main goal

of this empirical application is to show that there is a wide “range” of posterior probabilities

of the ϵ-approximate hypothesis associated with any given p-value in actual empirical research,

thereby reinforcing the caution against using p-values as a key standard for empirical research.
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Both of these investigations concern the “reproducibility” of published research. The original

studies are selected because of their prominence, particularly in terms of the prominence of

the journal. Each study is represented by one “key result” or “key effect” and a corresponding

p-value, determined as part of the replication analysis. The estimated effects are correlation

coefficients. Consequently, all of the estimated effects are mutually comparable. For effect

sizes measured by correlation coefficients, the hugely influential Cohen (1969)15 has a lengthy

discussion that states that an effect size of 0.1 is “small,” an effect size of 0.3 is “medium,”

and an effect size of 0.5 is “large.”

Summarized to the core feature that is relevant for the purposes of this paper, both

investigations have two sets of estimated effects and p-values.16 One set comes from the

original studies, and the other set comes from the corresponding replication studies. Each

original study provides one estimated effect and one p-value; each replication study does the

same. Given the inclusion criteria for these reproducibility investigations, this set of p-values

is representative of “important” research.

Figure 4 shows the empirical scatter plot of the p-values and the corresponding posterior

probability of the ϵ-approximate hypothesis, where ϵ can be 0.1 (“small”) or 0.3 (“medium”)

or 0.5 (“large”). The results are displayed separately for the replication studies and the

original studies, given the possible concerns with the original studies raised by the replication

analysis. The much larger number of psychology studies are displayed in red circles, and the

smaller number of economics studies are displayed in blue squares. Each mark corresponds to
15This has been cited approximately 240,000 times according to Google Scholar at the time of this writing.
16These investigations report the nature of the underlying hypothesis test, and those that evidently do not fit
the framework of this paper are dropped. In practice, this primarily entails dropping p-values based on an
F -test with strictly more than 1 numerator degrees of freedom. This arises particularly in the psychology
investigation, from the application of two-way or multi-way ANOVA, which essentially amounts to (effects
and) hypotheses involving multiple parameters of interest, rather than a single scalar parameter of interest as
covered by this paper. (Of course, the analysis in this paper allows the underlying statistical model to have
multiple parameters, but the analysis in this paper is for a scalar parameter of interest.) Given the nature of
the analysis conducted here, which asks about the “range” of posterior probabilities of the ϵ-approximate
hypothesis, this restriction only serves to bias “against” the finding that empirically there is a substantial
range of posterior probabilities associated with any given p-value.
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a study. In every panel of Figure 4, there is a substantial range of posterior probabilities of the

ϵ-approximate hypothesis associated with any given p-value. Thus, among different studies

with a similar p-value, there are very different posterior probabilities of the ϵ-approximate

hypothesis. This further reinforces caution against using p-values as a key standard for

empirical research. There are many pairs of studies displayed in Figure 4 such that the

study with a higher p-value actually has a lower posterior probability of the ϵ-approximate

hypothesis.

6. Finite sample results

A similar analysis can be done in finite samples, with additional distributional assumptions

on the data generating process. td(µ,Σ) is a t-distribution with location µ, scale Σ, and

degrees of freedom d. Thus td(0, 1) ≡ td is the standard t-distribution with d degrees of

freedom. Fd1,d2 is an F-distribution with degrees of freedom d1 and d2. Define Ga(v, w) ≡

Fta
(√

QF1,a(1 − v) (−1 + w)
)

− Fta
(√

QF1,a(1 − v) (−1 − w)
)

for a ∈ N and v ∈ (0, 1). As

with, essentially, any finite sample inference result (frequentist or Bayesian), the results in

this section rely on a distributional assumption.

Assumption 2. It holds that:

(1) The classical sampling distribution of θ̂N −θ0
σ̂N

has distribution tN−d(0, 1), i.e., a standard

t-distribution with N − d degrees of freedom, for some estimated scale factor σ̂N > 0

and integer d such that N − d > 0.

(2) The Bayesian posterior θ|X(N) has distribution tN−d(θ̂N , σ̂2
N).

An example of Assumption 2 is when Xi ∼i.i.d. N (θ, σ2) with θ and σ2 unknown. Then,

d = 1, θ̂N = 1
N

∑N
i=1 Xi, and σ̂2

N = 1
N

(
1

N−1
∑N
i=1(Xi − θ̂N)2

)
. The prior is the typical

improper “uninformative” uniform prior on (θ, log σ). See Gelman, Carlin, Stern, Dunson,

Vehtari, and Rubin (2013, Section 3.2). Another example is when θ is a linear regression

coefficient with homoskedastic, normally-distributed unobservables. Then, d is the number
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(a) Replication studies, ϵ = 0.1 (b) Original studies, ϵ = 0.1

(c) Replication studies, ϵ = 0.3 (d) Original studies, ϵ = 0.3

(e) Replication studies, ϵ = 0.5 (f) Original studies, ϵ = 0.5

Figure 4. Empirical scatter plot of the posterior probability of the ϵ-
approximate hypothesis that θ ∈ [−ϵ, ϵ] and the p-value.
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of explanatory variables (counting the intercept), θ̂N is the OLS estimate, and σ̂2
N is the

estimate of the variance of the OLS estimate. The prior is a typical improper “uninformative”

uniform prior. See Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013, Section 14.2) or

Lancaster (2004, Section 3.3.3). As with the large sample approximation, and the discussion

of Assumption 1, note again the analysis concerns the case of unknown variance (or scale)

with corresponding estimate σ̂2
N . This assumption parallels typical assumptions used for

classical inference in finite samples.

The classical test statistic is WN =
(
θ̂N −c
σ̂N

)2
. By Assumption 2, if the hypothesis θ = c is

true, WN has distribution F1,N−d. Therefore, the p-value is pN = FF1,N−d
(WN).

Theorem 2. Under Assumption 2, and when the p-value is not 1,17 for any ϵ > 0 chosen

by the econometrician (possibly data-dependent), the Bayesian posterior probability of the

ϵ-approximate hypothesis that θ ∈ [c− ϵ, c+ ϵ] is GN−d

(
pN ,

ϵ
|θ̂N −c|

)
.

Lemma 1. Ga(v, w) → Fχ2
1,Q

χ2
1

(1−v)

(
w2Qχ2

1
(1 − v)

)
as a → ∞.

As N → ∞, Theorem 2 limits to Theorem 1 by applying Lemma 1. In fact, Theorem 2

and Theorem 1 are practically the same numerically when N − d ≥ 1000, and also when

N − d ≥ 300 and pN ≥ 0.001, among other cases.18

This shows that the main point of this paper is not tied to a particular setup (e.g.,

“asymptotic approximation” or “finite sample”) but rather a general feature of p-values. This

also reinforces that the large sample approximation is achieving a valid approximation to finite

sample behavior, based on the non-degenerate approximation to the posterior distribution

that is discussed after the statement of Theorem 1.
17Similar to the asymptotic approximation, pN = 1 happens with probability 0 when θ̂N has a continuous
sampling distribution and pN = 0 cannot happen in this setup.
18This claim is based on the maximal absolute difference between the posterior probability of the ϵ-approximate
hypothesis per Theorem 2 and the asymptotic approximation, where the maximum is across values of pN , ϵ,
and θ̂N . In the stated cases, the maximal absolute difference is less than 0.003.
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Figure 5 shows the posterior probability of the ϵ-approximate hypothesis, for varying values

of N−d. Except for extremely small values of N−d, the result is almost identical to the large

sample approximation in Figure 1, which appears also as Figure 5f. The main qualitative

features of Figure 1 (or equivalently Figure 5f) are also present in the finite sample panels of

Figure 5.

7. Conclusions

This paper derives closed-form expressions for the posterior probability of the ϵ-approximate

hypothesis. The properties are discussed, which contradict some common practices about

using p-values. In the running example of treatment effects, an implication of the results is

that larger p-values can correspond to lower posterior probabilities that the treatment effect

is close to zero, potentially lower than from a smaller p-value. This shows that the research

community can “miss” (e.g., not publish) treatment effects that are probably not close to

zero if the research community only “accepts” (or focuses on) treatment effects with small

p-values for the hypothesis of zero treatment effect. In particular, contrary to common usage,

a larger p-value (“not rejecting”) does not mean that there is a lack of evidence against the

hypothesis that the treatment effect is (close to) zero. On the other hand, it is possible to

use the expressions derived in this paper to assess the posterior probability of ϵ-approximate

hypotheses even without access to the original data, in the sense that the expressions depend

only on quantities that are conventionally reported in research, thereby assessing the evidence

about whether the treatment effect is close to zero.
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Appendix A. Technical appendix

Lemma 2. Under Assumption 1, ||Π√
N(ψ−ψ̂N )|X(N)−N (0, Σ̂N )||TV →p 0 and ||Π

Σ̂
− 1

2
N

√
N(ψ−ψ̂N )|X(N)

−

N (0, Im×m)||TV →p 0.

Proof of Lemma 2. ||N (0, Σ̂N ) − N (0,Σ0)||TV →p 0 since total variation distance is bounded

above by the square root of Kullback-Leibler divergence (e.g., DasGupta (2008, Chapter 2))

and Σ̂N →p Σ0 by Assumption 1. Therefore, ||Π√
N(ψ−ψ̂N )|X(N) − N (0, Σ̂N)||TV →p 0.

Let hN (·) : Rm → Rm be hN (w) = Σ̂− 1
2

N w. Since hN (·) is continuous, h−1
N (B) is Borel for any

Borel B. Therefore, |Π
Σ̂

− 1
2

N

√
N(ψ−ψ̂N )|X(N)

(B) − N (0, Im×m)(B)| = |Π√
N(ψ−ψ̂N )|X(N)(h−1

N (B)) −

N (0, Σ̂N)(h−1
N (B))|. Because ||Π√

N(ψ−ψ̂N )|X(N) − N (0, Σ̂N)||TV →p 0, ||Π
Σ̂

− 1
2

N

√
N(ψ−ψ̂N )|X(N)

−

N (0, Im×m)||TV →p 0. □

For the hypothesis ψ̃ = c, where ψ̃ ∈ Rm̃ is a sub-vector of components of ψ (e.g., ψ̃ = θ

or ψ̃ = (θ, γ2)), and Σ̃ is the corresponding sub-matrix of Σ, the test statistic is

W̃N = N( ˆ̃ψN − c)′ ˆ̃Σ−1
N ( ˆ̃ψN − c).

The p-value is

p̃N = P (χ2
m̃ > W̃N) = F χ2

m̃
(W̃N).

Lemma 3. Under Assumption 1,

sup
0<q<1

∣∣∣∣∣∣∣∣∣q − Π

δ ˆ̃ΣN ,2
(ψ̃, c) ≤

√√√√√Qχ2
m̃,Q

χ2
m̃

(1−p̃N )
(q)

N
| X(N)


∣∣∣∣∣∣∣∣∣ →p 0.
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Proof of Lemma 3. || ˆ̃Σ− 1
2

N

√
N(ψ̃ − c)||22 =

√
N(ψ̃ − c)′ ˆ̃Σ−1

N

√
N(ψ̃ − c) =

√
N(ψ̃ − ˆ̃ψN +

ˆ̃ψN − c)′ ˆ̃Σ−1
N

√
N(ψ̃ − ˆ̃ψN + ˆ̃ψN − c). Let Z ∼ N (0, Im̃×m̃). For any Borel B ⊆ Rm̃,

Π ˆ̃Σ
− 1

2
N

√
N(ψ̃−c)|X(N)

(B) = Π ˆ̃Σ
− 1

2
N

√
N(ψ̃− ˆ̃ψN + ˆ̃ψN −c)|X(N)

(B) = Π ˆ̃Σ
− 1

2
N

√
N(ψ̃− ˆ̃ψN )|X(N)

(B− ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN−

c)). By Assumption 1 and Lemma 2, |Π ˆ̃Σ
− 1

2
N

√
N(ψ̃− ˆ̃ψN )|X(N)

(B − ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c)) − (Z +

ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c))(B)| = |Π ˆ̃Σ

− 1
2

N

√
N(ψ̃− ˆ̃ψN )|X(N)

(B − ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c)) − Z(B − ˆ̃Σ− 1

2
N

√
N( ˆ̃ψN −

c))| →p 0. Therefore, ||Π ˆ̃Σ
− 1

2
N

√
N(ψ̃−c)|X(N)

− (Z + ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c))||TV →p 0.

Let h(·) : Rm̃ → R be given by h(z) = z′z. Since h(·) is continuous, h−1(B) ⊆ Rm̃ is

Borel for any Borel B. Therefore, |Π
|| ˆ̃Σ

− 1
2

N

√
N(ψ̃−c)||22|X(N)

(B) − (Z + ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c))′(Z +

ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c))(B)| = |Π ˆ̃Σ

− 1
2

N

√
N(ψ̃−c)|X(N)

(h−1(B)) − (Z + ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c))(h−1(B))|. Be-

cause ||Π ˆ̃Σ
− 1

2
N

√
N(ψ̃−c)|X(N)

−(Z+ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN−c))||TV →p 0 by the above, ||Π

|| ˆ̃Σ
− 1

2
N

√
N(ψ̃−c)||22|X(N)

−

(Z + ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c))′(Z + ˆ̃Σ− 1

2
N

√
N( ˆ̃ψN − c))||TV →p 0.

CN = (Z + ˆ̃Σ− 1
2

N

√
N( ˆ̃ψN − c))′(Z + ˆ̃Σ− 1

2
N

√
N( ˆ̃ψN − c)) ∼ χ2

m̃,W̃N
. Therefore,

sup0<q<1 |Π
|| ˆ̃Σ

− 1
2

N

√
N(ψ̃−c)||22|X(N)

((−∞, Qχ2
m̃,Q

χ2
m̃

(1−p̃N )
(q)]) − CN((−∞, Qχ2

m̃,Q
χ2

m̃
(1−p̃N )

(q)])| →p 0.

By definition, W̃N = Qχ2
m̃

(1−p̃N ), so CN ((−∞, Qχ2
m̃,Q

χ2
m̃

(1−p̃N )
(q)]) = CN ((−∞, Qχ2

m̃,W̃N

(q)]) =

q. The result follows since by definition Π(δ2
ˆ̃ΣN ,2

(ψ̃, c) ≤
Q

χ2
m̃,Q

χ2
m̃

(1−p̃N )
(q)

N
| X(N)) =

Π
|| ˆ̃Σ

− 1
2

N

√
N(ψ̃−c)||22|X(N)

((−∞, Qχ2
m̃,Q

χ2
m̃

(1−p̃N )
(q)]). □

Lemma 4. Under Assumption 1,

sup
0<q<1

∣∣∣∣∣∣∣∣∣

q − Π

|θ − c| ≤

√√√√√√Qχ2
1,Q

χ2
1

(1−pN )
(q)

Qχ2
1
(1 − pN) |θ̂N − c| | X(N)


 1[pN < 1]

∣∣∣∣∣∣∣∣∣ = op(1).

Proof of Lemma 4. Qχ2
1
(1 − pN) = WN = N(Σ̂N,11)−1(θ̂N − c)2, so (Σ̂N,11)− 1

2 =

√
Q

χ2
1

(1−pN )
√
N |θ̂N −c|

when |θ̂N − c| ≠ 0 which is equivalent to pN < 1. When |θ̂N − c| ≠ 0, δΣ̂N,11,2(θ, c) =

(Σ̂N,11)− 1
2 |θ − c| =

√
Q

χ2
1

(1−pN )
√
N |θ̂N −c| |θ − c|. The result follows from Lemma 3 by substitution. □
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Proof of Theorem 1. By simplification, Π
(
θ ∈ [c− ϵ, c+ ϵ]|X(N)

)
=

Π

|θ − c| ≤

√√√√√√Q
χ2

1,Q
χ2

1
(1−pN )

(
F

χ2
1,Q

χ2
1

(1−pN )

(
ϵ2

|θ̂N −c|2
Q

χ2
1

(1−pN )
))

Q
χ2

1
(1−pN ) |θ̂N − c||X(N)

. Therefore, the

result follows from Lemma 4. □

Proof of Corollary 1 and Corollary 2. By Johnson, Kotz, and Balakrishnan (1995, page

441), Fχ2
1,b

(ab) where a = ϵ2

|θ̂N −c|2 and b = Qχ2
1
(1 − pN) can be written Φ(

√
b(

√
a − 1)) −

Φ(−
√
b(

√
a + 1)). The derivative with respect to b is 1√

2π exp(−1
2(ab − 2

√
ab + b))(

√
a −

1)1
2b

− 1
2 + 1√

2π exp(−1
2(ab+ 2

√
ab+ b))(

√
a+ 1)1

2b
− 1

2 . The sign of the derivative is the same

as the sign of exp(2
√
ab)(

√
a− 1) + (

√
a+ 1). If a ≥ 1, the derivative is obviously positive.

The first part of Corollary 2 follows, since b is a decreasing function of pN . If a < 1, the

derivative is negative (resp. positive, zero) exactly when b is greater than (resp. less than,

equal to) 1
2
√
a

log
(

−
√
a−1√
a−1

)
. The first part of Corollary 1 follows, since this means the posterior

probability is a decreasing (resp., increasing) function of pN when pN is greater than (resp.,

less than) 1 − Fχ2
1

(
1

2
√
a

log
(

−
√
a−1√
a−1

))
. The limits in these Corollaries are apparent from the

representation from Johnson, Kotz, and Balakrishnan (1995, page 441) that implies that

Fχ2
1,t2

(s2t2) = Φ(t(s− 1)) − Φ(t(−s− 1)). □

Proof of Theorem 2. Follow the strategy of Theorem 1. WN = QF1,N−d
(1 − pN) and σ̂−1

N =√
QF1,N−d

(1−pN )
|θ̂N −c| . The posterior for σ̂−1

N (θ − c) is tN−d(σ̂−1
N (θ̂N − c), 1). Therefore, Π(|θ −

c| ≤ ϵ|X(N)) = Π(−σ̂−1
N ϵ − σ̂−1

N (θ̂N − c) ≤ σ̂−1
N (θ − c) − σ̂−1

N (θ̂N − c) ≤ σ̂−1
N ϵ − σ̂−1

N (θ̂N −

c)|X(N)) = P (−σ̂−1
N ϵ− σ̂−1

N (θ̂N −c) ≤ tN−d ≤ σ̂−1
N ϵ− σ̂−1

N (θ̂N −c)) = P (−σ̂−1
N ϵ− σ̂−1

N |θ̂N −c| ≤

tN−d ≤ σ̂−1
N ϵ − σ̂−1

N |θ̂N − c|) by symmetry of the tN−d distribution. The final expression is

GN−d(pN , ϵ
|θ̂N −c|) using the expression for σ̂−1

N . □

Proof of Lemma 1. F1,a → χ2
1 and ta → N (0, 1) as a → ∞. Then use the representation for

Fχ2
1,t2

(s2t2) used in the proof of Corollaries 1 and 2. □
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