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ABSTRACT. This paper develops identification results for the distribution of valuations in a class of
allocation-transfer games. These games determine an allocation of units of a valuable object and
arrangement of monetary transfers on the basis of the actions taken by the players. The results
allow dependent valuations, discrete parts of the action space, non-differentiability, and unknown (to
the econometrician) details of how the allocations and transfers are determined. The identification
strategy is based on the assumption of monotone equilibrium, in which players use strategies that are
weakly increasing functions of their valuations for the object being allocated.
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1. INTRODUCTION

This paper develops identification results for a class of allocation-transfer games that involve
allocation of units of a valuable object and arrangement of monetary transfers on the basis of the
actions taken by the players. Each of the players has a privately-known valuation for a unit of
the object, and uses a strategy that relates its valuation to the action it takes in the game. The
valuations can be dependent, including but not limited to “affiliated values.” The identification result
concerns recovering the distribution of these valuations from the data. The data corresponds to
multiple instances (“plays”) of the game. Partial identification results are stated in terms of “bounds”
on the distribution of valuations in the sense of the usual multivariate stochastic order. Examples

of allocation-transfer games include contests, auctions, public good provision, and various strategic

market models.
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The identification strategy involves using the utility maximization problem to recover information
about the unobserved valuation corresponding to an observed action. Hence, the identification
strategy relates to an extensive literature in econometrics that uses utility maximization as a source
of identification, particularly the use of optimality (e.g., “first order” or equilibrium) conditions in
structural models. This approach is especially common in industrial organization, including (but
not limited to) in models of firm behavior and monopoly/oligopoly (e.g., Rosse (1970), Bresnahan
(1982), Lau (1982), Berry, Levinsohn, and Pakes (1995)) and models of auctions (e.g., Paarsch (1992),
Donald and Paarsch (1993, 1996), Laffont, Ossard, and Vuong (1995), Guerre, Perrigne, and Vuong
(2000), Athey and Haile (2002), and Aradillas-Lépez, Gandhi, and Quint (2013)). These literatures
have been reviewed in Berry and Tamer (2006), Paarsch and Hong (2006), Athey and Haile (2007),
Berry and Reiss (2007), Reiss and Wolak (2007), Kline, Pakes, and Tamer (2021), and Kline and
Tamer (2023) among other places.

However, beyond simply assuming utility maximization, the identification results are based on
the assumption of monotone equilibrium. Each player uses a strategy that expresses its action as a
function of its valuation. In a monotone equilibrium, the strategies are weakly increasing functions.
Therefore, in a monotone equilibrium, if the valuation of a player increases then that player puts
forth more effort in contest models, bids more in auction models, offers/demands more in market
models, or contributes more in public good provision models. In addition to the intuitive appeal of
monotone equilibrium, the economic theory literature has emphasized the importance of proving
existence of monotone equilibrium in many specific games. Moreover, the economic theory literature,
including Maskin and Riley (2000), Athey (2001), McAdams (2003, 2006), and Reny (2011), has
also emphasized the importance of results that establish general conditions on the game that are
sufficient for existence of monotone equilibrium. Therefore, the monotone equilibrium assumption
can be motivated either as an intuitive assumption, or as a conclusion from the economic theory
literature.

The identification result in this paper has multiple features. First, and most obviously, the
identification result applies to a class of allocation-transfer games that involve allocation of units of
a valuable object and arrangement of monetary transfers on the basis of the actions taken by the
players. This class includes models of contests, auctions, procurement auctions and related models

of oligopoly competition, partnership dissolution, public good provision, and strategic (non-“price
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taking”) markets. The possible interpretations of the actions include effort in contest models, bids in
auction models, bids/asks in market models, or contributions in public good provision models. In some
games, as in auctions of a single unit, at most one player can be allocated a unit of the object. In other
games, as in auctions of multiple units or public good provision, multiple players can be allocated a
unit of the object. In some games, as in contests, the allocation can be non-deterministic. Therefore,
the identification result can be viewed as exploring the identification power of the assumption of the
use of monotone strategies across this entire class of allocation-transfer games.

Second, the identification strategy can handle the case of dependent valuations. Third, the
identification strategy allows for discrete parts of the action space and non-differentiability. The
action space can be discrete, continuous, or combinations of discrete and continuous. Allowing
for dependent valuations and discrete actions combine to particularly complicate the identification
problem. With discrete actions, necessarily a range of valuations use the same action (and this can
happen also even without discrete actions, as discussed elsewhere in this paper), so those valuations
cannot be distinguished based on observed behavior. This already complicates the identification
problem, and should be expected to result in partial identification. Further, with dependent valuations,
the utility maximization problem depends on the beliefs held by the player, which depend on the
valuation of the player and therefore can be quite complicated, since players with different valuations
have different beliefs about the valuations of the other players and hence different beliefs about the
actions of the other players. The beliefs of players with different valuations are generically distinct
even if they use the same action, so the identification strategy must account for the fact that players
that use the same action do not necessarily have the same beliefs.

Even with the goal of identification of valuations, it is important for the econometrician to recover
some information about player’s beliefs when using utility maximization as a source of identification,
since beliefs are part of the mapping between valuations and observed behavior that results from
utility maximization. The monotone equilibrium assumption allows a key step in the identification
strategy whereby, essentially, the beliefs of a player who takes a given action can be shown to be
suitably “bounded” between the beliefs of players who take larger and smaller actions.

Although continuity of the action space and differentiability is a common (simplifying) assumption
in the related economic theory literature, discrete actions are common in empirical practice. For

example, when the action is a monetary amount (e.g., a “bid” in an auction or “contribution” in
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public good provision), almost any realistic implementation in practice will place restrictions on the
allowed bids. For instance, the implementation might require bids that are an integer multiple of some
fixed amount (e.g., the allowed bids might be 5 dollars, 10 dollars, 15 dollars, etc.).! Discrete actions
can also arise for other reasons. For instance, some public good provision models have a binary action
space: contribute or not contribute, as in Example 5 in Appendix B. Lack of differentiability can
arise even without discrete actions; see for instance Example 6 in Appendix B. This approach also
accommodates fundamentally “non-numerical” actions, for example a binary “participation” decision
when “participation” in the game is voluntary, as in some auction models in Example 2 in Appendix
B.

Fourth, the identification strategy does not depend on the econometrician knowing the details of
how the allocations and transfers are determined on the basis of the actions of the players, because
it is possible to use the data to identify these objects. The equilibrium strategies that relate a
player’s valuation to that player’s action will implicitly depend on these details. For example, the
econometrician does not need to know the “contest success function” in models of contests, which
relate the effort put forth by the players to the probabilities that each of them win the contest (see
Example 1 in Appendix B). And for another example, the econometrician does not need to know
the endogenous quantity function in auctions where the quantity of the object allocated depends on
the actions of the players, as in a “supply curve” (see Example 2 in Appendix B). Such features of
the game can be identified from the data, rather than assumed known, and the same identification
strategy for the distribution of valuations applies regardless of the details of these features of the

game.

k“Discrete” can be used with different definitions, which are worth distinguishing. Hortacsu and McAdams (2010)
studies an identification problem (and empirical application) in discriminatory price divisible goods auctions with
independent private values. Kastl (2011) studies an identification problem (and empirical application) in uniform price
divisible good auctions with (mainly) independent private values. In those models, bidders submit a bid function
that specifies a quantity demanded for each possible price. Hence, neither model is covered by the allocation-transfer
game framework studied in this paper, because those models deal with an action space that is a bid function rather
than just a scalar bid. More importantly, the notion of “discrete” action is also different. In particular, Kastl (2011)
uses “discrete” (per Kastl (2011, Assumption 3)) as a statement about the step function nature of the bid functions,
where each player submits a bid function that is a step function, and therefore characterizable by a discrete vector
of prices and quantities that characterize each “step” of the bid function. Horta¢su and McAdams (2010) similarly
emphasize step bid functions. However, the actual price and quantities at each step of the bid function is unrestricted.
By contrast, as applied to auctions, this paper uses discrete as a statement on the restriction of the allowed bid levels.
So, the players can only bid, for example, integer multiples of some minimal bid level. An earlier version of Hortagsu
(2002) looked at a model with a discrete grid of possible prices, and hence with a “discrete” action space more similar
to the discreteness in this paper. Of course, the overall identification problem (and hence identification strategy) is
still different from the identification problem addressed in this paper, particularly given the differences in the models
being identified. The identification strategy in this paper does not restrict to auctions or independent values.
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Even with the discrete actions allowed in this paper, the models considered in this paper are
distinct from the models considered in the literature on the “econometrics of (entry) games” (e.g.,
Tamer (2003), Aradillas-Lopez and Tamer (2008), Ciliberto and Tamer (2009), Aradillas-Lépez (2010),
Bajari, Hong, Krainer, and Nekipelov (2010), Bajari, Hong, and Ryan (2010), de Paula and Tang
(2012), Kline and Tamer (2012, 2016), de Paula (2013), Kline (2015, 2016), Aradillas-Lépez (2020),
Ciliberto, Murry, and Tamer (2021)). Simply put, a setting involving allocations and transfers is
different from a setting of market entry, and so the models and corresponding identification strategies
are also different. Nevertheless, the results do apply to some models of strategic (non-“price taking”)
market behavior, which can describe behavior after entry into a market, as in Example 6.

The remainder of the paper is organized as follows. Section 2 sets up the allocation-transfer game
framework studied in this paper. Section 3 provides the identification strategy. Finally, Section 4
concludes. The appendices collect a variety of technical details and extensions. Appendix A provides
sufficient conditions for point identification, relating to a discussion in Section 3.7 about the “limit”
when the number of actions either is or increases to become an interval. Appendix B provides
examples of the allocation-transfer games framework studied in this paper. Appendix C collects the
proofs. Appendix D shows that identification of some features of the distribution of valuations is
robust to partial failures of the equilibrium assumption. Appendix E provides sufficient conditions

for a particular assumption used in Appendix A.

2. ALLOCATION-TRANSFER GAME FRAMEWORK

There are N > 2 players in the game, which determines the allocation of units of a valuable object
and arrangement of monetary transfers on the basis of the actions of the players. Players are indexed
by ¢+ =1,2,..., N. In principle, the results could apply to some “single-player games” with N =1, if

the assumptions hold in such a game, but the focus is on multiple-player games.

2.1. Utility functions. Player i has valuation 6; for a unit of the object. The utility of player ¢
with valuation 6;, and who receives allocation z; of the object and transfers away (“pays”) ¢; units of
money is

U(@l, Xy, tz) = 912% — ti.

The sign of ¢; is unrestricted, so player ¢ can be “paid” if ¢; is negative. The allocation and transfers

are determined by the game, described shortly in Section 2.3. For example, the monetary transfer
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could be the payment in an auction model, the “price” in a market model, or the contribution in a
public good provision model. This utility function is standard in the economic theory literature.

[t is common knowledge among the players that the valuations 6 = (01,65, ...,0y) are drawn from

the joint distribution F'(6). The actual realization 6; is the private information of player i.

Assumption 1 (Dependent valuations). It is common knowledge among the players that 0 is drawn

from F(0), and 0; is the private information of player i.

The econometrician need not know the support of 6. It is allowed that € is continuous, discrete,
or some combination. The identification results allow dependent valuations. In particular, allowing
dependent valuations allows the realistic possibility that a particular player can draw inferences
about the valuations of the other players, on the basis of its own private valuation. The identification

results do simplify under the further assumption of independent valuations:

Assumption 2 (Independent valuations). In addition to Assumption 1, player valuations are

independent, in the sense that the components of 0 = (01,0s,...,0N) are independent random

variables, so F(0) = F1(01)F5(02) --- Fx(0n).

Throughout the paper, the case of independent valuations is treated as an important special case,
alongside the more general results allowing dependent valuations. Even under the assumption of
independent valuations, it is not assumed that players necessarily draw their valuation from the
same distribution, so F;(-) need not equal F}(-), which is useful for example to model “weak” and
“strong” bidders in auctions or asymmetries between buyers and sellers in models of market behavior.

Symmetry is allowed as a special case.

2.2. Actions. After realizing 0;, player ¢ takes an action a; from its action space A;. The interpretation
of the actions depends on the game, and includes efforts in contest models, bids in auction models,

announcements (bids/asks) in market models, and contributions in public good provision models.

Assumption 3 (Action space is ordered). For eachi € {1,2,..., N}, the econometrician knows the

action space for player i is A; C R.

This allows the action space to be continuous, discrete, or some combination of continuous and

discrete. Particularly for any discrete part of the action space, there is not necessarily a “numerical
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interpretation” of the actions in A;, similar to how the numerical encodings of the categories in
categorical choice models may or may not actually have a substantive “numerical interpretation.”
For example, in games with voluntary participation including auctions with participation costs, one
of the actions is the “do not participate” action. The action “DN P” in such games would have a
special (“non-numerical”) interpretation of “do not participate (in the auction).”

Even if there is no “numerical interpretation” of the actions in A;, it is important that the action
space is ordered because it is assumed that players use monotone strategies, which requires by
definition that the action space is ordered. The numerical encoding of “special” actions as numbers
in A; respects the ordering of the actions. For example, in auctions with voluntary participation,
generically players with low valuations choose to not participate, so it makes sense to define DN P to
be the lowest possible action, in order for the equilibrium strategy to be monotone. It could be that

DNP is encoded as —1 or —2, for example. The specific numerical encoding is irrelevant.

2.3. Allocations and transfers. The vector of all players’ actions is a = (ay,aq,...,ay), the

vector of all players’ allocations is © = (x1,29,...,2x), and the vector of all players’ transfers is
t=(t1,ta, ... tn).

The game determines the allocations and transfers on the basis of the actions taken by the players.
Even for a given profile of actions, non-deterministic allocations and transfers are allowed, for example
to allow “noise” in the process of determining a winner in a contest (see Example 1). On the basis of

all players’ actions a, the realized allocation and transfer is a realization” from the joint distribution

of

(#(a), t(a)) = (T1(a), To(a),. .., Tx(a), ti(a), ta(a),. .., tx(a)),

where Z;(a) (resp., £;(a)) is a random variable that characterizes the distribution of allocations (resp.,
transfers) for player i given that the players take actions a. These distributions characterizing the

allocations and transfers are part of the specification of the game rules.

2By construction, these realizations are draws from the joint distribution and therefore by construction are independent
from all other model quantities (e.g., the valuations of the players). This condition formalizes the notion that the
allocation and transfer “don’t depend on” anything except the actions of the players, and is (often implicitly) a
standard condition in the related economic theory literature. Of course, the realized allocation and transfer will
indirectly depend on the players’ valuations, since the players’ valuations determine the players’ actions and the players’
actions determine the realized allocation and transfer. For example, in the case of a tie for high bid in an auction, the
auctioneer could flip a coin to determine who wins, but the outcome of the coin flip cannot somehow be “correlated”
with the valuations of the players.
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The variable x; (resp., t;) is player i’s realized allocation (resp., transfer) in its utility function. If
(#1(a), Z2(a),. .., Zn(a),t1(a),t2(a),. .., tx(a)) is a degenerate random variable, then the allocation
and transfer is deterministic when the players take actions a. As a function of all players’ actions,
the expected allocation to player i is T;(a) = E(Z;(a)) and the expected transfer from player i is
ti(a) = E(ti(a)).

Although not assumed for the identification results, in most instances of allocation-transfer games,
the allocation to and transfer from player ¢ are weakly increasing functions of a;. The allocation to
player i can be either a weakly increasing function of a_; (e.g., public good provision in Example 5)
or weakly decreasing function of a_; (e.g., most auctions in Example 2).

Per the standard assumption from the economic theory literature that the game is common
knowledge among the players, the players know the distributions of (#(-),#(-)). In other words, the
players know the “rules” of the game.

The identification results can apply regardless of whether or not the econometrician knows the
distributions of (Z(-),%(-)), and/or the expected allocations and transfers (Z(-),#(-)). In particular,
any “randomness” that underlies non-deterministic allocations and transfers need not be explicitly
modeled or known by the econometrician. Intuitively, if the econometrician does not know these

objects, then it is possible to use the data to identify these objects.

gies mutually determined

F1GURE 1. Graphical summary of game in the case of N = 3.

2.4. Diagram of game framework. Figure 1 provides a sketch of the basic idea of the allocation-

transfer game framework studied in this paper. The game determines the allocations and transfers
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(the x and t variables) on the basis of the actions of the players (the a variables). The strategy of
player ¢ determines the action a; taken by player ¢ as a function of the realized valuation 6; of player 7.
The strategies depend implicitly on the rules of the game. In equilibrium, the strategies also depend
on the strategies used by the other players, in the sense of mutual best responses. Obviously, as
illustrated via specific examples in Appendix B, many economic environments can be modeled using
this allocation-transfer game framework. This includes contests, auctions, procurement auctions and
related models of oligopoly competition, partnership dissolution, public good provision, and strategic
(non-“price taking”) market behavior. The results apply to this class of allocation-transfer games,
and therefore do not rely on specifics of particular examples. The range of examples in Appendix B

shows the generality of this allocation-transfer game framework.

2.5. Data and identification problem. The identification problem concerns recovering the distri-
bution of valuations from observing many instances (“plays”) of the game. For context, the related
literature on identification in auctions has typically considered this identification problem in the case
of auctions specifically. Variables relating to the actions, allocations, and transfers in upper-case
letters represent quantities in the data, whereas quantities in lower-case letters represent variables in
the underlying game. For example, A; is the realized action in the data from player ¢, whereas a; is
the action variable in the underlying game from player i. Therefore, from each play of the game,
the realized actions are A = (Ay, As, ..., Ay), the realized allocations are X = (X1, Xs,..., Xy),
and the realized transfers are T' = (13,T5,...,Ty). Unless otherwise stated, the econometrician
observes population data on the actions, allocations, and transfers. Hence, unless otherwise stated,
the population data is P(A, X, T).

The realized allocations and realized transfers are linked to the realized actions through the game:

in each instance of the game, by definition (X, 7)) is a draw from

(%<A)7E(A)) = (il(A)a f2(14)7 s 7§N(A)7Z1<A)7EQ<A)7 s 7EN<A))7
the possibly non-deterministic allocation and transfer distributions given action profile A of the
players. In the case of deterministic allocation and deterministic transfer, for a particular action
profile A, then it can be understood that simply X = Z(A) = (71(A4),72(A),...,Zn(A)) and
T = H(A) = (11 (A), B(A), ... Tn(4)).
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In some cases, the identification strategy can be based on less than full data on P(A, X, T).
Specifically, if the econometrician specifies a complete model of the game, in the sense that the
econometrician knows (Z(a),f(a)), then the identification strategy can be based on only P(A). If the
game involves a “two-part transfer,” as in an auction with a participation cost, then the identification
strategy can in certain cases be based on data from only one part of the transfer. See the discussion

in Section 3.4.
3. IDENTIFICATION ANALYSIS

3.1. Baseline assumptions. The following baseline assumptions are used. These assumptions are
standard from the economic theory literature.

The players are assumed to be risk neutral, and therefore the expected allocations and transfers
T;(a) and ?;(a) determine ez post expected utility of player i as a function of its valuation and all

players’ actions:

Uz(HZ, a) = Glfl(a) - %1(01)

In this paper, ex post expected utility refers to after the realization of the actions of all players in
the game, which still can involve the expectation with respect to the non-degenerate randomness of
the allocation rule and transfer rule. Because of expected utility, the utility that is actually realized
(based on actually realized allocation and transfer) plays no role distinct from ez post expected utility.
Ex interim expected utility refers to before the realization of the actions of all players in the game,
but after an individual player realizes its own valuation, which involves taking the expectation with
respect to the player’s beliefs about the other players’ actions and the randomness of the allocation
rule and transfer rule.

Because player ¢+ does not know the actions of the other players when it chooses its action, it
must form beliefs about the actions of the other players. With dependent valuations, the beliefs
held by player ¢ about the actions of the other players depends on player i’s realized valuation,
so player i’s beliefs are a distribution II;(a_;|0;), defined over the actions of the other players,
a_;=(ay,...,a;_1,ai11,-..,ay), that conditions on player ¢’s realized valuation 6;. In other words,
with dependent valuations, players might be able to draw inferences about other players’ valuations,

and therefore other players’ actions.
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Independent valuations Under Assumption 2 (Independent valuations), player i’s beliefs are
I1;(a_;), independent of player i’s realized valuation. That is because with independent valuations, the
realized valuation of player ¢ does not revise the beliefs of player i about 6_;, and therefore does not

revise the beliefs of player v about a_;. *

Therefore, ex interim expected utility of player i as a function of its valuation and its action is
Vi(0i, a;) = 0; B, (Ti(as, a_)|0;) — B, (ti(as, a_;)|0;).

With independent valuations, 6; affects player i’s ex interim expected utility only through the direct
effect on the value of the object. With dependent valuations, #; also affects the expected allocation
and expected transfer experienced by player i, even for a fixed action a;, since player i’s expected
allocation and expected transfer depend on player i’s beliefs about the other players’ actions, and
therefore on ;. This substantially complicates the identification problem under dependent valuations,
compared to independent valuations.

Given this ex interim expected utility function, player ¢ rationally takes an action that maximizes
its ez interim expected utility given its realized valuation, so that its strategy a;(6;) is supported on
the set of actions that maximizes ex interim expected utility:

(1) a;(0;) € A(arg max V;(6;,a;)).

aiE.Ai

The identification strategy is based around the utility maximization problem in Equation 1 facing

each player as a function of its realized valuation.

Assumption 4 (Optimal strategy is used). For each i € {1,2,..., N}, for each possible valuation
0;, player i uses a strategy a;(0;) when it has valuation 0;, with a;(0;) € A(arg maxg,ca, Vi(0:,ai)), so

each action taken according to the strategy a;(6;) mazimizes ex interim expected utility.

In this assumption and other places, “possible valuation” means a valuation that is possible
according to the (unknown) distribution of valuations. This assumption means that player i is
rational, in the sense that it uses a strategy that maximizes its utility given its beliefs. Assumption
4 does not state that player ¢ has correct beliefs. Instead, the subsequent Assumption 5 states
that player ¢ has correct beliefs. Also, Assumption 4 allows the use of a mixed strategy, but

the identification strategy is based on the assumption of monotone equilibrium in monotone pure
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strategies, as formalized and discussed subsequently in Assumption 7. Breaking up the assumptions
makes it easier to explain the identification strategy, by making it easier to refer to separate roles of
the assumptions of using an optimal strategy, correct beliefs, and monotone equilibrium.

Let P(A, X, T,0) be the “infeasible” data, regardless of whether those variables are observed by
the econometrician. Then let P(A_;|0;) be the realized distribution in the “infeasible” data over
A= (A, ..., A1, Aiq, ..., Ay) conditional on the realized valuation 6; of player i. Of course, 6;
is not observed by the econometrician, so the econometrician cannot condition on 6;. In a Bayes Nash
equilibrium, each player’s beliefs are correct and correspond to the actual distribution of actions of
the other players, in the sense that, for each player i, II;(a_; € B|6;) = P(A_; € B|6;) for all Borel
sets B. In other words, the beliefs of player ¢ about a_; when player i has valuation 6; is equal to the
actual realized distribution of A_; when player ¢ has valuation #;. This is the standard definition of

correct beliefs with incomplete information.

Assumption 5 (Correct beliefs). For each i € {1,2,..., N}, player i has correct beliefs, in the sense
that, for each possible valuation 6;, 11;(a_; € B|6;) = P(A_; € B|0;) for all Borel sets B.

Independent valuations Under Assumption 2 (Independent valuations), the assumption of correct

beliefs is 1;(a_; € B) = P(A_; € B), since then beliefs do not depend on ;. *

As in other incomplete information setups, this assumption of correct beliefs implicitly supposes
the realized distribution of actions (i.e., the data) comes from a single equilibrium corresponding to
the players’ beliefs. If multiple equilibria were played in the data, even with “correct beliefs” in each
equilibrium, the realized distribution over actions in the data would be a mixture over the beliefs
held by the player across equilibria, and thus the realized distribution over actions in the data would
not equal players’ beliefs. However, the econometrician need not have any ez ante knowledge of
which equilibrium is selected in the case of multiple equilibria. If there is a unique equilibrium of the
game, then obviously the assumption that the data comes from a single equilibrium is automatically
satisfied. Furthermore, the economic theory literature has many results on equilibrium uniqueness,
sometimes under further assumptions on the “nature” of the equilibrium, for instance with some
results that show cases where there is a unique equilibrium that involves using monotone strategies,
even if there are other equilibria that do not involve monotone strategies. In that way, assuming the

use of monotone strategies “helps” with the assumption that the data comes from a single equilibrium,
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by ruling out certain equilibria. The combination of Assumptions 4 and 5 entails a Bayesian Nash
equilibrium.

Under correct beliefs held by player i, V;(0;, a;) = 0; Ep(T;i(a;, A_;)|0;) — Ep(ti(a;, A_;)|0;).
Appendix D shows that identification of some features of the distribution of valuations is robust
to partial failures of these assumptions that all players use an optimal strategy with correct beliefs,

basically as long as some players (but not necessarily all players) satisfy these assumptions.

Assumption 6 (Counterfactual ex interim expected utility maximization problem has a solution).
For each i € {1,2,..., N}, maxg,eca, (0;Fn,(T;(a;,a_;)|0)) — En,(ti(a;,a_;)|0)) has a solution for

any possible valuations 6; and 0.

Assumption 4 (Optimal strategy is used) states that the ez interim expected utility maximization
problem has a solution when 6; = 0. Standard conditions imply that a solution exists even when
0; # 0. In particular, Assumption 6 holds trivially when |.4;] is finite. Also, clearly Assumption 6 is
redundant under Assumption 2 (Independent valuations) given Assumption 4 (Optimal strategy is

used).

3.2. Monotone equilibrium. The main assumption of the identification strategy is monotone

equilibrium.

Assumption 7 (Weakly increasing strategy is used). For each i € {1,2,..., N}, for each possible
valuation 0;, a;(0;) is a pure strategy. And, for eachi € {1,2,...,N}, a;(-) is a weakly increasing’

function.

The use of pure strategies implies that a;(6;) is a particular action (i.e., a pure strategy) rather
than a non-degenerate distribution (i.e., a mixed strategy). Equilibrium existence in pure strategies
is a general result for games with incomplete information. The economic theory (and existence)
of such equilibria in pure strategies has been studied, for example, in Milgrom and Weber (1982,
1985), Dasgupta and Maskin (1986), Plum (1992), Reny (1999), Lizzeri and Persico (2000), Maskin
and Riley (2003), and Jackson and Swinkels (2005) in addition to citations elsewhere in this paper,

particularly Appendix B, among a huge literature.

31t is straightforward to accommodate a weakly decreasing strategy, because a weakly decreasing strategy can be
translated into a weakly increasing strategy by flipping the signs on the allocation rule and valuations, because if the
strategy is weakly decreasing in the valuation 6;, then the strategy is weakly increasing in the “negative valuation”
0; = —6; with “negative allocation” 2;(a) = —%,(a). Note that ;&;(a) = 0;7;(a) so utility is unaffected by flipping the
signs in this way.
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The assumption of monotone equilibrium is intuitive. For example, in applications to contests
(Example 1), a monotone strategy simply requires the intuitive condition that players put forth effort
as a weakly increasing function of their valuation for the object awarded by the contest. Or for
another example, in applications to auctions (Example 2), a monotone strategy simply requires the
intuitive condition that players make bids that are weakly increasing functions of their valuation for
the object being auctioned. Appendix B provides a variety of other examples of games for which
Assumption 7 is intuitive.

The economic theory literature has emphasized the importance of proving existence of equilibrium
in monotone strategies. General results establishing conditions for existence of pure strategy equilibria
in monotone strategies include Maskin and Riley (2000), Athey (2001), McAdams (2003, 2006), and
Reny (2011). Such results establish general conditions on the game that are sufficient for existence of
monotone equilibrium. Moreover, again as cited elsewhere in this paper, particularly Appendix B,
the economic theory literature has also established existence of pure strategy equilibria in monotone
strategies in the context of specific games. Many economic theory papers establishing Assumption
7 assume affiliated valuations. Particularly in the context of affiliation in auctions, see Milgrom
(2004, Section 5.4.1) for details. Further, many papers on identification in auctions assume affiliated
valuations. The identification strategy in this paper does not require affiliation, as long as Assumption
7 is satisfied. Equilibria in monotone strategies can exist even without affiliated valuations, see for
example Monteiro and Moreira (2006).

This paper uses monotonicity in a fundamentally different way from other common uses of
monotonicity in econometrics. In other areas of econometrics, monotonicity commonly relates to the
functional relationship between two observed variables, and the functional relationship is the object
of interest. Monotonicity assumptions are commonly used in regression models or treatment effects
models that relate an outcome to a treatment. Monotonicity has been imposed as a shape restriction
on the estimator in regression models (e.g., Mukerjee (1988), Ramsay (1988, 1998), and Mammen
(1991)), and has been used in the identification of treatment effects models (e.g, Manski (1997),
and Manski and Pepper (2000, 2009)). By contrast, when assuming use of monotone strategies, the
monotonicity relates to the equilibrium functional relationship between the observed action and the

unobserved valuation, and the distribution of the unobserved valuations is the object of interest.
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Under Assumption 7, players use weakly increasing strategies, which accommodates the possibility
that player ¢ with valuation 6; takes the action a;(6;) and player i with valuation 0 # 6; also takes
the same action a;(0;) = a;(0;). Such “flat spots” in the strategy would necessarily arise due to
pooling when there is discreteness of the action space. Such “flat spots” can also arise even without
discreteness in the action space, for example as discussed in Example 6. Under Assumption 7, the
set {0; : a;(0;) = af} of valuations 6; that use given action af € A; is necessarily an interval, which
can be the empty set, a singleton set, or a non-degenerate interval (possibly infinite, and possibly
including or not the endpoints).”

The identification problem caused by the possibility of “flat spots” in the strategies is exacerbated
by the fact that the identification strategy accommodates dependent valuations. Specifically, the
beliefs of players with different valuations are generically distinct even if they use the same action, so
the identification strategy must account for the fact that players that use the same action do not

necessarily have the same beliefs.

Assumption 8 (Monotone effect of counterfactual beliefs on utility). For each i € {1,2,...,N},
and any possible valuations 6; and 0, there is some selection

a;(0;;0) € arg max (0;En, (Ti(ai, a-)|07) — B, (fi(ai; a-i)|67))

a; €EA;

with a;(0;;60;) = a;(6;) from Assumption 7, such that when 0; < 0!, with either 0} = 0; or 0! = 0;,

0iFon, (Ti(ai(0;; 07), a-i)16;) — En, (ti(ai(05; 67), a-)|0;) >

0:En, (%i(ai(0::07), a-i)|07) — Em, (£:(ai(63; 07), a-i)[07).

The action a;(6;;6) maximizes the “counterfactual” ez interim expected utility of player ¢ with
valuation 6; and “counterfactually” the beliefs of a player with valuation 8! possibly not equal to 6;.
Assumption 8 states that the “counterfactual” ez interim expected utility experienced by player 7 that
has valuation 6; that uses such an action a;(6;;0!) and “counterfactually” has the beliefs of valuation
0! with 0, < 67 is weakly greater than that under the beliefs with valuation 8/. A sufficient condition
is that 6, Em,(7;(a;(0;;0)),a-)|0)) — En,(ti(a;(0;;0)),a-;)|6;) is a weakly decreasing function of #..

4Suppose {6; : a;(6;) = a*} is not the empty set. And suppose that a;(6;) = aF and a;(6) = a*. Suppose without loss
of generality that 6; < .. Since a;(-) is weakly increasing, any valuation between 6; and 6, also uses action a;.
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Hence, Assumption 8 can be interpreted as stating that utility is monotone in the “counterfactual
beliefs” arising from “counterfactual” valuations.

If valuations are independent, then beliefs do not depend on valuation, so Assumption 8 is satisfied.
Further, even when valuations are dependent, Assumption 8 is satisfied when valuations are suitably
“positively dependent” (i.e., affiliated as in Milgrom (2004, Section 5.4.1), or alternatively, with the
distribution of #_;|6; monotonic in §; in the usual multivariate stochastic order), all players have
correct beliefs (per Assumption 5) and use weakly increasing strategies (per Assumption 7), and ez
post utility 0,7;(a;(0;;07),a_;) — t;(a;(0;;0)),a_;) of player i weakly decreases with the actions of the

other players, when player i takes the action a;(6;;6!).
Lemma 1 (Sufficient conditions for Assumption 8). Suppose that for each i € {1,2,...,N}, and
any possible valuations 0; and 8, there is some selection

a;(0;;0;) € arg max (0: B, (Ti(as, a—3)|0]) — B, (ti(as, a_:)16;))

a; €A;

with a;(0;;0;) = a;(6;) from Assumption 7, such that 0;T;(a;(0;;0)),a_;) —t;(a;(0;;0)),a_;) is a weakly
decreasing function of a_;. Suppose Assumptions 5 (Correct beliefs) and 7 (Weakly increasing strategy
is used) are satisfied. Suppose either: (a) valuations are affiliated, or (b) the distribution of 0_;|(0; = 6)
is stochastically smaller than the distribution of 0_;|(6; = 0}) in the usual multivariate stochastic

order, when 0; < 0. Then Assumption § is satisfied.

Under the conditions of Lemma 1, if player ¢ “counterfactually” has the beliefs of player i with
valuation ¢ with 0, < 67 then player i believes the other players to take weakly lower actions
compared to the case of having the beliefs of player ¢ with valuation 8/, and therefore ez interim
expected utility is weakly greater under “counterfactual” beliefs ¢, compared to “counterfactual”
beliefs 07 since ex post utility is weakly greater when the actions of the other players are weakly
lower. In other words, Assumption 8 is the idea that player i believes itself to be “better oft” when
it has beliefs that involve “weaker” opponents. The conditions in Lemma 1 are sufficient but not
necessary for Assumption 8, so a violation of these conditions does not imply that Assumption &
fails. In particular, as noted above, Assumption 8 is satisfied with independent valuations, regardless
of any other condition. Also, if the direction of the monotonicity happens to be opposite that of
Assumption 8, it is straightforward to adjust the identification result accordingly (essentially the

inequality 2/ < a; < 2! switches directions in the statement of Theorem 1).
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3.3. Definitions of stochastic ordering. The identification strategy results in bounds on the
multivariate distribution of valuations in terms of the usual multivariate stochastic order, which
concerns both the marginal distributions of each player’s valuation and the dependence structure

(“correlation”) of the valuations.

Definition 1 (Upper set). Let x = (21, 2,...,74) € RYand y = (y1, o, .. .,%4) € R A set U C R?
is an upper set if x € U and y > x implies that y € U. Per the standard, the condition y > x is

equivalent to y; > x; for all j =1,2,...,d.

Definition 2 (Usual multivariate stochastic order). Let A and B be d-dimensional random vectors,
with probability laws P4 and Pg. A is stochastically larger than B in the usual multivariate stochastic
order if P4(U) > Pp(U) for all Borel measurable upper sets U C R%. And A is stochastically smaller
than B in the usual multivariate stochastic order if B is stochastically larger than A in the usual

multivariate stochastic order.

As formalized in Shaked and Shanthikumar (2007, Theorem 6.B.1), A is stochastically larger than
B in the usual multivariate stochastic order exactly when there are A and B defined on the same
probability space, such that A has the same distribution as A and B has the same distribution
as B, and such that A > B with probability 1. In the usual multivariate stochastic order, the
partial identification result establishes that the random vector of valuations 6 = (6,60, ...,0y) is
stochastically larger than a certain random vector (i.e., “the distribution of # is bounded below”) and
is stochastically smaller than another certain random vector (i.e., “the distribution of # is bounded
above”). The random vectors that are the upper and lower bounds for # are themselves identified
quantities, and have a constructive definition as a function of the observable data.

As discussed in Shaked and Shanthikumar (2007, Chapter 6), by the standard properties of the
usual multivariate stochastic order, the partial identification result in terms of the usual multivariate
stochastic order also implies partial identification of other quantities, including expectations of
functions of the valuations and the multivariate cumulative distribution function of the valuations.
In particular, the condition that the random vector A is stochastically larger than the random vector
B in the usual multivariate stochastic order is equivalent to the condition that E(¢(A)) > E(p(B))

for all weakly increasing functions ¢ for which the expectations exist.
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In particular, because ¢(X) = 1[X < t] is weakly decreasing in X, the condition that A with
distribution function F is stochastically larger than B with distribution function Fg in the usual
multivariate stochastic order implies that F,(t) < F(t) for all t € R%.

As formalized in Definition 3, the condition that F4(t) < Fp(t) for all t € R is known as the lower
orthant order (e.g., Shaked and Shanthikumar (2007, Chapter 6.G.1)). The lower orthant order is
a distinct sense of stochastic ordering. For random vectors, unlike for scalar random variables, the
lower orthant ordering is implied by, but does not imply, the usual multivariate stochastic ordering.
See Miiller (2001) for more about the relationships between the senses of stochastic ordering when A

and B are multivariate normal.

Definition 3 (Lower orthant stochastic order). Let A and B be d-dimensional random vectors, with
cumulative distribution functions F4 and Fg. A is stochastically larger than B in the lower orthant
stochastic order if F4(t) < Fp(t) for all t € R%. And A is stochastically smaller than B in the lower

orthant stochastic order if B is stochastically larger than A in the lower orthant stochastic order.

Bounds on the distribution of valuations in the usual multivariate stochastic order also imply
bounds on other quantities derived from the distribution of valuations, as discussed in Shaked and
Shanthikumar (2007, Chapter 6). In their independent private values English auction setup, Haile and
Tamer (2003) have shown how to use lower orthant bounds on the scalar distribution of valuations to

bound the optimal reserve price in auctions.

3.4. Game-structure identification of differences. Let A¢ be the support of A;, the actions
taken in the data by player i. Potentially, A¢ is a proper subset of A;. Identification of §; depends

on identification of aspects of the structure of the game itself, as follows:

Definition 4 (Specification with game-structure identification of differences). A specification

(a;, 2,2, 2") € (A;)? of player i with z[, 2/ € A? is a specification with game-structure identifi-

79 ~1 1) ™1

cation of differences if
Ep(fi(ai, A71)|A7J = Z;) — Ep(fi(zi, A72)|Al = Zz/‘,) and Ep(ﬂ-(ai, A7@)|Az = Z;) — Ep(fZ(ZZ,AszAl = Z;/)

are point identified. The set of specifications with game-structure identification of differences is R;.

Definition 4 involves expected values of the allocation rule and transfer rule with respect to the

observed distribution of P(A). Therefore, one sufficient condition for game-structure identification of
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!, 2"} is for the allocation rule and transfer rule to be

1) 7

differences at any given specification (a;, z;, 2
known ez ante by the econometrician. Thus, game-structure identification of differences can fail only
when the econometrician does not ez ante know the allocation rule and/or transfer rule.

In fact, for particular functional forms of the allocation rule and transfer rule, it suffices for the
econometrician to know less than the entire rule, since only differences are relevant for Definition 4.
For instance, this can accommodate an unknown (to the econometrician) participation cost.”

Even if the allocation rule and transfer rule is not known by the econometrician, Z;(a;,a_;) =
Ep(X;|A; = a;, Ay = a_;) and t;(a;,a_;) = Ep(Ti|A; = a;, A_; = a_;) are point identified quantities
under standard conditions on identification/estimation of conditional expectations. In the interest of
space, just one such sufficient condition for game-structure identification of differences is reported

here. Let A? be the support of the observed actions (A, Ay, ..., Ay).

Lemma 2 (Sufficient conditions for game-structure identification of differences with discrete actions
and unknown allocation rule and/or transfer rule). Suppose that Assumptions 1 (Dependent valuations)
and 3 (Action space is ordered) are satisfied. Suppose the data is P(A, X, T). If A; is discrete for
all players i, and A* = [1; A, then any specification of actions (a;, z;, 2}, 2!') € (AD)?* of player i

is a specification with game-structure identification of differences per Definition 4. Consequently,

Ad x Ad x A¢ x A} CR;.

Independent valuations Under Assumption 2 (Independent valuations), A_; is independent of A;
and therefore z, and z!' effectively play no role in Definition 4. So, under Assumption 2, a specification
(a;,2;) € (A;)? is a specification with game-structure identification of differences if it satisfies the
condition in Definition /4, without the conditioning on z, and z!. Hence, under Assumption 2, the

dimension of elements of R; changes. *

3.5. Identification results. As often with partial identification results, the identified set can depend

on ex ante known bounds on the partially identified quantity.

°In an auction, for example, a participation cost is a transfer paid by any bidder who places a bid (rather than taking
the “do not participate” action). Suppose that ¢;(a;, a_;) = t;1(a;, a—;) +tie(a;, a—;) = ti1(as, a—;) +i2(a;), so that the
transfer is the sum of two transfers, one of which depends only on a;. Then the relevant difference is Ep(t;(a;, A_;)|A; =
Zz/) — EP(EZ(Z“ A71)|Al = Z;/) = (Ep(fﬂ(ai, A72)|AZ = Zz/) —l—%ﬂ(al)) — (EP(Eil(Ziv A,Z)‘AZ = Z;l) —&—ﬂg(zz)) It would
therefore suffice for the econometrician to know #;1(a;, a_;) for all (a;,a_;) and #;2(a;) — t;2(2;) at least for the specified
(a;, ;). If ;5 is the participation cost, and the cost of participating is the same for actions a; and z;, then the
econometrician knows that t;2(a;) — t;2(2;) = 0 even if the econometrician does not know the participation cost.
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Assumption 9 (Known bounds on valuations). For each i € {1,2,..., N}, the valuation 0; must be

in the set [Or;, Op,].

By setting ©; = —oo and Op; = oo, it is possible to check the identification result without such
known bounds. In many games, it might be reasonable to set O; = 0, reflecting that the object
has non-negative value to all players. Assumption 9 is not the statement that the support of the
valuations is [©r;, O], but rather is the statement that the support of the valuations is contained
within [©1;, Op;]. Hence, as also stated in Assumption 1 (Dependent valuations), the econometrician
need not know the support of the valuations.

In order to state the identification result, let

(2)

Ep(ti(ai,A_;)|Ai=z))—Ep(ti(zi,A_;)|Ai=z]) .
Ep(fi(ai,A,i)‘Aizzg)pr(fi(zi,A,i”Ai:Zé/) ’
2l <a; <zl
sup
®pi(a;) = max zi€ { A Ep(Tilas, AL)|A; = 20) — Ep(Ti(z, A_)| A = 27) > 0},
(@i, 2i, 21, 2]') € R;
OLi
and
(3)
Ep(ti(a;,A_i)|Ai=z)—Ep(ti(2:,A_i)|Ai=2)) |
E'p(fi(ai,A,¢)|A¢=Z,IL-)7Ep(fi(zi,A,¢)|A¢=Z,£/) :
2l < a; < 2,
inf
®y;(a;) = min zi € { A Ep(Ti(ai, A)|A; = ) — Ep(Ti(2, A_y)|A; = 2) < 0},
(@i, 2ziy 2, 20) € Ry
Oui

where O, and Oy, are ex ante known bounds on valuations from Assumption 9.

Let

(4) Yrila;) = sup  ®p;(al) and Yyi(a;) = inf Brri(al).

al<a;,al€A? al>a;,a, €AY
This provides the notation for the following main partial identification result. Section 3.6 contains

a sketch of the identification strategy.
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Theorem 1. Under Assumptions 1 (Dependent valuations), 3 (Action space is ordered), J (Optimal
strateqy is used), 5 (Correct beliefs), 6 (Counterfactual ex interim expected utility maximization
problem has a solution), 7 (Weakly increasing strategy is used), 8 (Monotone effect of counterfactual
beliefs on utility), and 9 (Known bounds on valuations), the distribution of valuations 6 is partially
identified, and the identification is constructive, because the distribution of 0 is stochastically larger
than the distribution of (Yr1(A1), Yr2(As), ..., Tin(AN)) and is stochastically smaller than the
distribution of (Ty1(A1), Yue(A2), ..., Yun(Ay)), in the sense of the usual multivariate stochastic
order, where (A, As, ..., AN) is distributed according to the data P(A, X,T) and Yr;(-) and Yy;(-)

are the identifiable functions given in Equation 4.

Independent valuations With independent valuations: replace Assumption 1 (Dependent valua-
tions) with Assumption 2 (Independent valuations), drop Assumption 6 (Counterfactual ex interim
expected utility mazimization problem has a solution), and 8 (Monotone effect of counterfactual beliefs

on utility), and replace the Y functions with the I functions defined in Equation 7, below.

Let
Ep(ti(ai,A_i))—Ep(ti(zi,A-s)) .
Ep(xi(ai,A—))—Ep(@i(z,A-))
sup 2 € {Az : Ep(fi(ai, A,Z)) — EP(Ti(Zi, A,l)) > 0},
(5) ELi(CLi) = max
(ai, ZZ> c RZ
O
and
Ep(ti(ai,A_i))—Epti(zi,A-1)) .
Ep(@i(ai,A—i))—Ep(@i(2i,A-i)) ~
inf Z;i € {Az : EP(Ti(CLZ',A,i)) — EP(TZ'(Z,L',A,IL)) < O},
(6) Zvi(a;) = min
(CLZ‘, Zz) - RZ
Oui
Let
(7) FLi(ai) = sup ELZ'(CL;) and FUi(ai) = inf EUZ(a;)

/ ;i d
al<a;,a} €AY ;204,07 €A
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Further, under Assumption 2 (Independent valuations), game-structure identification of differ-
ences can be established: Ep(t;(a;, A_;)) = Ep(Ti|A; = a;), Ep(Ti(ai, A)) = Ep(Xi|Ai = @),
Ep(ti(zi, A_;)) = Ep(Ti|A; = ), and Ep(T;(z;, A_;)) = Ep(Xi|A; = z). *

Under Assumption 2 (Independent valuations), the identification result in Theorem 1 is “nearly
sharp” in the sense that the lower bound and upper bound can “nearly” be achieved, as formalized

by the following result.

Theorem 2. Under the same assumptions used for the independent valuations result in Theorem 1,
and with the additional assumption that R; = A; X A; fori € {1,2,..., N}, for any strictly increasing
functions T;(+) defined on A such that Tr;(-) < Ti(-) < Tyy(v) foralli € {1,2,..., N}, the distribution
of valuations (I'1(A1),T2(As),...,I'n(AN)) is such that there is a corresponding Bayesian Nash
equilibrium using weakly increasing strategies with the same distribution of actions as P(A). Moreover,
for any e > 0, there are such I';(-) with the further property that 0 < sup, c 4. (Fi(a;) — ri(a;)) < e

and there are such I';(-) with the further property that 0 < sup,. ¢4, (T'vi(a;) — Ti(a;)) < e.

The condition R; = A; x A; requires every pair of actions has game-structure identification of
differences. This is needed to ensure that the econometrician knows the difference in expected
allocation and expected transfer for any possible pair of actions, to ensure it is possible to establish
optimality of a given action for a given valuation, as required in a sharpness proof. Sufficient
conditions would be, essentially, that the econometrician ex ante knows the expected allocations and
expected transfers (or the allocation rule and the transfer rule), or that all actions are used in the
data.

The distribution of valuations (Y1(A;), Tr2(As), ..., Trn(An)) or the distribution of valuations
(Yu1(Ay), Yya(As), ..., Tun(An)) that comprise exactly the lower bound and upper bound from
Theorem 1 may not be achievable in a Bayesian Nash equilibrium because they might require that
two or more different actions are used by a single valuation, if the lower (upper) bound is the same
for at least two different actions, which cannot happen in equilibrium using pure strategies as given
in Assumption 7 (Weakly increasing strategy is used). However, per the last part of Theorem 2, the
lower and upper bounds can be approached arbitrarily closely, and thus are essentially “limit points”

of the identified set.
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Under Assumption 1 (Dependent valuations), the identification result in Theorem 1 appears to not
share this sharpness property, and it appears quite difficult to provide a useful® characterization of
the sharp identified set with dependent valuations, as a consequence of the need to bound player
beliefs. Still, there is a sense in which the identification result is “sharp in the limit” in that it limits
to point identification in particular when the action space either is or limits to a continuous/interval

action space, per Section 3.7 and Appendix A.

3.6. Sketch of identification proof. Under Assumption 4 (Optimal strategy is used), for any

valuation 6;, any action a;(6;) that solves the utility maximization problem in Equation 1 satisfies

(8) 0i B, (T:(ai(6;), a-:)0;) — B, (:(a:(0:), a—:)10:) >

max (HZEIL (TZ(ZZ, CL_Z)|07,) - EIL (EZ(Z“ a_z)|92)) .

zi€EA;

Under Assumption 5 (Correct beliefs), Equation 8 implies

9) 0:Ep(Ti(ai(0:), Ai)|0:;) — Ep(ti(ai(0;), A-i)]0;) >

zi€A;

Under Assumption 7 (Weakly increasing strategy is used), for any action a € A; there is an

interval

(10) Oi(a;) = {0; : a;(0;) = a; }

2

of valuations such that player ¢ with valuation 6; uses action a] if and only if 6; € ©;(a}). Moreover,
if a; # a then ©,(a;) and ©;(a}) are disjoint; and if a; < a; and ©;(a;) and ©;(a}) are both non-empty

then sup ©;(a;) < inf ©;(a}). Therefore, for any z;, 2, € AY,

(11)  Ep(Ti(zi, A)|Ai = ) = Ep(Ti(zi, Ai)|0; € ©4(2)) = Ep(Ep(Ti(2i, A—)|0:)]0; € ©i(2;))

60f course, it is always possible to trivially write down the identified set by its definition that it is a distribution of
valuations consistent with the data and the assumptions.
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Hence, the beliefs expressions in Equation 9 conditioning on 6; are generically not point identifiable,
because generically multiple valuations use any given z; € A,.

Equation 9 implies, under Assumptions 5 (Correct beliefs), 6 (Counterfactual ex interim expected
utility maximization problem has a solution), 7 (Weakly increasing strategy is used), and 8 (Monotone
effect of counterfactual beliefs on utility), for 0] < 6; < 6/, and letting a;(6;; 0) be the selection per

Assumption 8, for any z; € A;,
(13) 0; Ep(Ti(a;(0;), A-)|6;) — Ep(ti(ai(0:), A-y)|67) =
0:Ep(Ti(a;(0;), A-)10;) — Ep(ti(ai(6;), A-)|0;) >
0, Ep(Ti(a;(0:;07), A-i)|0:) — Ep(ti(ai(6::67), A—:)[0:) >
0, Ep(Ti(ai(0:67), A-i)|07) — Ep(ti(ai(0::07), Ai)|0]) >
0, Ep(Ti(2i, A_)|0)) — Ep(ti(2i, A;)|0Y).

Then, for any z; € A;, and letting z, < a;(6;) < z! be any two actions that are actually used by

player i, for at least some valuation of player 4, i.e., 2, 2 € A%:

(14) 0:Ep(Ti(ai(0:), Ai)|Ai = 2) — Ep(ti(ai(6:), Ai)| Ai = 2)
= 0:Ep(Ti(ai(0:), A~)|0; € ©i(2})) — Ep(ti(ai(6;), A-)|0; € ©:())
> 0, Ep(Ti(ai(0;), A-i)|6:) — Ep,(t:(ai(0:), A-i) 6:)
> 0:Ep(Ti(2, Ai)|07 € ©i(2))) — Ep(ti(z, Ai)|0] € ©i(2]))

= eiEP(Ti(Zi> A—z’)|Ai = Z;,) - EP(%i(ZwA—i)’Ai = Zz”)

And consequently,

Ep(ti(ai(0:), Ai)|A; = z}) — Ep(ti(2i, Ai)|Ai = 2)
Ep(Zi(ai(t;), A)|Ai = 2{) — Ep(Ti(2i, A)|Ai = 2]')

(15) 0; >

Vel < a;(0;) < 2, {2, 2} € AY,

Z; € {Az . Ep(Tz(a,(Gz),A_zﬂAl = Z;) — Ep(fl(ZZ,A_Z)lAZ = Zz”) > O}

o < Ertiai(0:), Ay)|Ai = 2) — Bp(ti(2i, Ai)|Ai = 27)
"7 Ep(mi(ai(0:), Ai)|Ai = 2]) — Ep(Ti(2, Ai)|Ai = 2])

Vel < ai(0;) < 2 {2, 2} € AL,

1) ™
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Zi € {Al : EP(TZ(CL1<01),A_Z)|AZ = Z;) — Ep(fZ(ZZ,A_Z)‘AZ = Zz”) < O}

An implication of Equation 15, restricted to specifications with game-structure identification of
differences, is

Ep(ti(ai(6:), A)|A; = =) = Ep(ti(zi, Ai)|Ai = 2/)

1 >
16) 6= Ep@(ai(eo,mi)mi ) = B (e A Ay = 1)

Vzi < a;(0;) < 2,z € {A; : Ep(Ti(ai(0;), A)| A = 2}) — Ep(Ti(zi, A_)|Ai = 20') > 0}

(ai(el) Riy % 7,7 z) € R

b < Ep(ti(ai(0;), A)|A; = 2}) — Ep(ti(2i, A_i)|Ai = 2])
T Ep(@(al-(ei),A_i)]Ai = 2;) — Ep(Ti(zi, A)| Ay = 2])

Vzi < a;(0;) < 2,z € {A; - Ep(Ti(ai(0;), A_)|A; = 2) — Ep(Ti(zi, A_)|Ai = 2)') < 0}

(ai(ez) ZZ?’Zz? 1) €R,

Consequently, the valuation corresponding to a; must be between ®;(a;) and ®y;(a;). By another
application of Assumption 7 (Weakly increasing strategy is used), any valuation consistent with a; is

between supy/ <, oread Pri(a;) and infyrs,, e aa Pui(ar).

3.7. Results with increasing number of actions. Consider the limit of z; — a;, 2, 1 a;, 2! | a; in
the right hand sides of Equations 2-3. This limit can arise when the action space is such that the
action a; is in the interior of the action space. Also, this limit can approximate a (heuristic) limit
when the number of actions increases to the limit of a continuous/interval action space, with the
caveat that the game itself changes when the action space changes, so such a limit cannot be taken
literally without a careful analysis of how the game changes. A formal point identification result with
an interval action space is provided in Appendix A.

A sketch of the intuition for how point identification arises in the limit goes as follows. Note that

Ep(ti(a;, A_))|A; = 2) — Ep(ti(zi, A_))|A; = 2!') 2ta; and 2!'La,
Ep(Ti(a;, A)|A; = 20) — Ep(Ti(zi, A)| Ay = 27)
Ep(ti(a;, A)|A; = a;) — Ep(ti(2i, AZi)| A = a;)
Ep(Ti(ai, A_y)|A; = a;) — Ep(Ti(zi, AL)|As = a;)
Ep(ti(ai,A_)|Ai=a;)—Ep(E;(2:,A_;)|Ai=a;) OEp(ti(zi,A_i)|Ai=a;)

ai—z 2i—a; 0z zi=a;
Brmilan A Aima) —FEr@aA-dlAi=a) 0L (i Ai=0)
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The first limit requires continuity of the conditional expectations as a function of the conditioning
variable, so that Ep(#;(a;, A_i)|A; = 2)) — Ep(ti(a;, A_i)|A; = a;) and Ep(Ti(a;, A_)|A; = 2)) —
EP(fi(ai,A—i”Ai = CLZ‘) as Z; T a; and EP(%Z(ZZ,A_Z”AZ = Z{/) — EP<¥1<Z“A—1)|AZ = ai) and

7

Ep(Ti(zi, Ai)|Ai = 2!') — Ep(Ti(zi, A_)|A; = a;) as 2 | a;, where the third and fourth limits

7

must hold uniformly over z; since z; is part of the limiting sequence.” The second limit is an

application of the definition of the derivative, and requires that the derivatives exist and that

OEp (Ti(zi,A_s)|[Ai=a;)
0z;

# 0. In that case, the valuation 6; corresponding to action a; is bounded

zi=a;
OEp(t;(z;,A_;)|A;=a;)
0z;

2 =044

above and below by, and thus must equal, PP pv— = WU,(a;).® In particular, this

Oz;

2i=aq

suggests that relatively finer discrete action spaces (e.g., auctions that allow bids that are any integer
multiple of one cent compared to any integer multiple of five dollars) can be expected to result in

relatively tighter identification of the distribution of valuations.

4. CONCLUSIONS

This paper develops identification results for the distribution of valuations in a class of allocation-
transfer games that determine an allocation of units of a valuable object and arrangement of monetary
transfers on the basis of the actions taken by the players. The identification results are constructive

and are based on the assumption of monotone equilibrium. The results allow dependent valuations,

7Continuity of the conditional expectations is related to the condition of no point masses used in Appendix A. Suppose
a;(0;) = a} has the unique solution 6, so 6} is the unique valuation to use action a}. Then there will be no point
mass at a in the distribution of A;. Suppose further that a;(-) is strictly increasing in a neighborhood of 67, and that
a;(+) is continuous in a neighborhood of 6. The first condition is slightly stronger than the condition that 6 is the
unique valuation to use action af, since it could otherwise be that, for example, a;(-) is strictly increasing “below”
0%, has a jump discontinuity at 67, and is flat “above” 6F. Since a;(-) is weakly increasing per Assumption 7, a;(-)
is continuous except for a countable set. Then, for example, Ep(Z;(a;, A_;)|A; = 2}) = Ep(ti(ai, A_;)|0; = a; *(2})).
Supposing that Ep(t;(a;, A_;)|0;) = Em, (t:(a;i,a—;)|0;) is itself continuous as a function of 6;, it would follow that
Ep(ti(a;, A_;)|A; = 2}) = Ep(ti(a;, A_;)|A; = a;) as z, — a; and similarly for the other limits of the other conditional
expectations. Otherwise, if there were multiple valuations to use action a;, resulting in a point mass at a;, a “small
change” in conditioning on A; = a; versus A; = z} could result in a “large change” in the actual expected value, since
it would correspond to a “large change” in the set of #; being equivalently conditioned on.

8This heuristic analysis also implicitly assumes game-structure identification on the right hand side of Equations 2-3.

Further, under the condition that aEP(f'i(zi’a‘:fi)‘Ai:ai) # 0, assume that aEP(Ei(zi’a’:fi)lAi:ai)
o zZi=a; v Z;

OEp (Zi(2i,A—i)|Ai=a;)

0z;

is continuous in

> 0 on an interval neighborhood of

23

z; (i.e., continuously differentiable). Consider the case that

OEp (wi(zi,A_i)|Ai=a;)

Zi

a;. The case that < 0 on an interval neighborhood of a; would be similar, though it seems

inconsistent with Assumption 7. Then Epl(fi(zi, A_;)|A; = a;) would be strictly increasing at z; = a;, and hence (when
zl ~a; = 2'), z; < a; would generally satisfy the condition that Ep(Z;(a;, A_;)|A; = 2[) — Ep(Ti(z, A_;)|A; = 2/) > 0
in the right hand side of Equation 2 and z; > a; would generally satisfy the condition that Ep(Z;(a;, A_;)|A; =
zl) — Ep(Ti(zi, A—;)|4; = 2z!') < 0 in the right hand side of Equation 3.
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discrete parts of the action space, and non-differentiability, and unknown (to the econometrician)

details of how the allocations and transfers are determined.

APPENDIX A. POINT IDENTIFICATION IN THE LIMIT

As noted in Section 3.7, the partial identification result “limits” to point identification under

certain conditions. This section formalizes that result.

Assumption 10 (Continuous action space and no point masses in distribution of actions). For each

ie{l,2,...,N}, A; = [y, Bi] and there are no point masses in the observed distribution of actions

of player 1.
Compared to Assumption 3 (Action space is ordered), Assumption 10 rules out discrete actions.

Assumption 11 (Smooth distribution of valuations). The distribution F(-) has associated ordinary

density f(-). For eachi € {1,2,..., N}, the support of the distribution of 0; is an interval.

Under Assumptions 1 (Dependent valuations), 7 (Weakly increasing strategy is used), and 11
(Smooth distribution of valuations), the lack of point masses from Assumption 10 (Continuous action
space and no point masses in distribution of actions) is equivalent to the condition that the strategy

. . . . ()
is strictly increasing.

Assumption 12 (Differentiable ex interim expected allocation and transfer). Foreachi € {1,2,..., N},
there is a set & 4 with P(A; € £;.4) = 0 such that for each possible valuation 0;, the expected alloca-
tion En,(T;(a;,a_;)|0;) and the expected transfer Ey,(t;(a;,a—_;)|0;) are differentiable functions of a;,

evaluated at any af € support(a;(6;)) N ES,.

The notation S for some set S is the complement of the set S. Assumption 12 requires that ez
interim expected allocation and ex interim expected transfer given valuation 6; are differentiable on
the support of the strategy a;(6;). Intuitively, this corresponds to the existence of the derivatives
used in the heuristic argument in Section 3.7. Under Assumption 7 (Weakly increasing strategy is

91f two valuations use the same action, then there is a point mass at that action because the entire interval connecting
those valuations would also use that same action. So, if there are no point masses, then no two valuations use the same
action, so the strategy must indeed be strictly increasing. Conversely, obviously if the strategy is strictly increasing,
then there are no point masses in the distribution of actions by Assumptions 1 and 11. This conclusion is not true
without Assumption 7, since if a;(-) were non-monotone, then the set {6; : a;(6;) = af} can be non-singleton, but not
necessarily of positive probability under the distribution of 6;. Therefore, if the strategy were non-monotone, then
multiple valuations could use the same action a; even though there is no mass point at a;.
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used), a;(0;) is a degenerate random variable (i.e., a pure strategy). However, under Assumption 4
(Optimal strategy is used) alone, mixed strategies are allowed. As mentioned above, breaking up the
assumptions in this way makes it easier to refer to the separate roles of the assumptions. Assumption
12 allows a probability zero exceptional set of actions at which differentiability fails.

Let

OEp(Ti(ai, A—i)|A; = 2) OEp(ti(ai, A—i)|A; = 2)

€z pu— t' pu—
(17) Ui(z) = 9a. . and V;(z) = 2a. .
and let
_ Vi(2)

The proof of Theorem 3 shows that ¥¥(a;) and W!(a;) actually do exist for a; € Af N ES,.

Definition 5 (Action with game-structure identification of derivatives). An action a; is an action
with game-structure identification of derivatives if ¥¥(q;) and W!(a;) can be identified to exist, and
U?(a;) and Wi(a;) are point identified quantities. Per convention, identification of derivatives on the

boundary of A; is understood to concern identification of the corresponding one-sided derivative.

Assumption 13 (Game-structure identification of derivatives). For each i € {1,2,..., N}, there is
a set &, with P(A; € &) =0 such that if a; € A¢N 55; is such that V¥(a;) and Vi(a;) exist then a;

is an action with game-structure identification of derivatives per Definition b.

Assumption 13 requires game-structure identification of derivatives for all actions used in the data
except for the probability zero exceptional set &;,. This accommodates the possibility that game-
structure identification of derivatives may fail on a set of probability zero. Similar to game-structure
identification of differences from Definition 4, game-structure identification of derivatives follows
from standard conditions on identification/estimation of derivatives of conditional expectations. See

Appendix E for details.

Assumption 14 (Non-zero marginal expected allocation). For each i € {1,2,..., N}, there is a set

Eim with P(A; € &) = 0 such that V¥(a;) # 0 for a; € AIN Efm.

Assumption 14 allows a probability zero exceptional set &; ,,.
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Theorem 3. Under Assumptions 1 (Dependent valuations), 3 (Action space is ordered), / (Optimal
strategy is used), 5 (Correct beliefs), 7 (Weakly increasing strategy is used), 10 (Continuous action
space and no point masses in distribution of actions), 11 (Smooth distribution of valuations), 12
(Differentiable ex interim expected allocation and transfer), 18 (Game-structure identification of
derivatives), and 1/ (Non-zero marginal expected allocation), the distribution of valuations 0 is point
identified, and the identification is constructive, because the distribution of 6 equals the distribution of
(U1(Ay),Uy(As), ..., Un(AN)), where (A1, A, ..., Ax) is distributed according to the data P(A, X, T)

and W,;(-) is the identifiable function given in Equation 18.

Independent valuations With independent valuations: replace Assumption 1 (Dependent valua-
tions) with Assumption 2 (Independent valuations) and replace the U functions with the A functions

defined in Equation 20.

Let
v _ OEp(Ti(a;, Ay)) iy OFp(ti(a;, Ay))
(19) A (z) = 9, . and A (z) = 2, .
Also, let
_ Ai(?)
Then,
(21) A (z) = 2a. . and A;(z) = 2. .

Under Assumption 2 (Independent valuations), the econometrician can identify A¥(-) and AL(-)

using the expressions in Equation 21. *

APPENDIX B. EXAMPLES OF GAMES
The class of allocation-transfer games studied in this paper is illustrated via examples.

Example 1 (Contests). In contest models, the actions are interpreted as “costly effort” toward
winning a valuable object. The economic theory of such models has been developed in, for example,
Hillman and Riley (1989), Baye, Kovenock, and De Vries (1993), Amann and Leininger (1996),
Krishna and Morgan (1997), Lizzeri and Persico (2000), and Parreiras and Rubinchik (2010), in

addition to an overall large literature. See for example Konrad (2007, 2009) for a summary of the
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literature, including discussion of theoretical applications to a broad range of instances of competition,
including advertising, litigation, political lobbying, research and development, and sports. Wasser
(2013) applies Athey (2001) to establish conditions for a monotone equilibrium in contests.

The valuation 6; is the value that player i has for the object. Often, the “efforts” are equivalent
to financial expenditures, so that 4; = [0,00) and the transfer rule is ¢;(a) = a;. However, other
transfer rules are also possible. For example, it might be that part of the effort is “refundable,” so
that players only expend some fraction of their effort, possibly depending on whether the player wins
or loses (e.g., see the models in Riley and Samuelson (1981) and Matros and Armanios (2009)). The
allocation rule Z(a) = (Z1(a), T2(a), . .., Ty(a)) is known as the “contest success function” that relates
the actions taken by the players to the probabilities that each of the players wins the valuable object.
The econometrician may not know the contest success functions z(-), and indeed the economic theory
literature has explored a variety of different contest success functions. See for example Corchén
and Dahm (2010) for a detailed discussion. For example, following Tullock (1980)-style models,

o - ifa#0
Ti(a) = 2= for some r > 0. In particular, the case of » = 1 has been interpreted as a

% ifa=0

“lottery” in which the probability that player ¢ wins is equal to player ¢’s share of the overall aggregate

effort. The specification states that if all players expend no effort, then each player has equal chance

Nfi(ai)
Z]’:l filay) ’
including the logistic specification f;(z) = ¥ as in Hirshleifer (1989). Alternatively, following Lazear

of winning the contest. More generally, there can be functions f;(-) such that z;(a) =

and Rosen (1981)- and Dixit (1987)-style models, 7;(a) = P.(a; + ¢; > max,4;(a; + €;)), where P, is
the distribution of “noise” or “randomness” involved in determining the contest winner. Because the
identification results do not require a complete specification of the game, the identification results do
not require the econometrician to know Z(-) (or the underlying distribution z(-)). In particular, the
econometrician might not know r or f; or P..

In the above specifications, generally a player that expends the most effort is most likely to win,

but is not guaranteed to win. In the limiting case of the “all-pay auction” formulation,

1 if 7 expends the most effort
Ti(a) = pi(a) if i ties for expending the most effort with at least one other player

0 if 7 does not expend the most effort,
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where p;(a) reflects the tie-breaking rule. In all-pay auction models, the player that expends the most

effort is guaranteed to win.

Example 2 (Auctions). Auction models can involve various complications like “participation costs,”
reserve prices, asymmetries, and /or multiple units possibly with endogenous supply. The economic
theory of auctions has been reviewed, for example, in Klemperer (1999, 2004), Milgrom (2004),
Menezes and Monteiro (2005), and Krishna (2009). Specifically the economic theory of auctions with
a discrete action space has been developed in Chwe (1989), Rothkopf and Harstad (1994), Dekel
and Wolinsky (2003), David, Rogers, Jennings, Schiff, Kraus, and Rothkopf (2007). One feature
of the auction theory literature is the range of auction formats, implying a range of allocation and
transfer rules. Much of the economic theory literature has focused on establishing monotonicity
of the strategy in auction models, and moreover the literature on general conditions for monotone
equilibrium in games often treats auctions as a leading example of their results.

The valuation 6; is the value player ¢ has for a unit of the object being auctioned. The specific
auction format would be reflected in the allocation rule Z(-) and transfer rule #(-), and the identification
strategy can apply to a wide range of auction formats. The general allocation-transfer game framework
flexibly accommodates various auction formats.

Let H;(a) = max;4; and j s.t. o;>r, @; be the highest bid other than the bid of player ¢, among the
bids from players that exceed the corresponding reserve price, where r; > 0 is the reserve price for
player 7.

Also let S(a) be the quantity allocated to the winning bidder as a function of the profile of bids
(e.g., Milgrom (2004, Section 4.3.3)). For example, the supply S(a) might depend only on the winning
bid, as in a “supply curve” at the “price” of the winning bid. See also Example 3 for related models
where S(a) can be interpreted as a “demand curve.” The standard case that there is one exogenous
unit of the object being auctioned is the special case that S(-) = 1.

The allocation is the awarding of units of the object from the auction. Then, for example, in

auction formats where the highest bidder wins, as long it exceeds its reserve price and the highest
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competitor’s bid among those bids exceeding the corresponding reserve price,
S(a) if a; > H;(a) and a; > r;
7i(a) = pi(a) if a; = H;(a) and a; > r;

0 a; < H;(a) or a; < r;,

where p;(a) € [0, S(a)] reflects the tie-breaking rule, the expected number of units that player i is
allocated when bids are a, involving a tie for high bid.

The transfers include the payments to the auctioneer, but could include other transfers, like
participation costs'’ when applicable. The transfer rule also depends on the auction format. For
example in a first price auction, and noting that ¢;(a) is the ezpected transfer that integrates over the
tie-breaking rule,

a;S(a) if a; > H;(a) and a; > 1;
ti(a) = a;pi(a) if a; = H;(a) and a; > 1;

0 a; < Hi(a) or a; < r;

Other auction formats would have different allocation rules and/or transfer rules.

The econometrician may not know z;(a) and/or #;(a), because the econometrician may not know
the “supply function” S(a), but again, the identification results do not require the econometrician to
know Z;(a) and/or t;(a).

Because the allocation-transfer game framework does not necessarily require the assumption of
symmetric players, the auction could involve such asymmetries as “strong” and “weak” bidders, as
in Milgrom (2004, Section 4.5). For example, Campo, Perrigne, and Vuong (2003) have focused on
establishing point identifying assumptions for asymmetric bidders with affiliated private values in
first price auctions. Reny and Zamir (2004) have studied the existence of monotone equilibrium in

related auction models.

10A participation cost can be modeled in a few different ways, particularly concerning whether or not the players know
their own valuation at the time they make the participation decision. A third approach allows that bidders observe a
signal of their valuation at the time of their participation decision, an identification problem studied in Gentry and Li
(2014). Other identification results emphasizing entry/participation in particular auction models includes Marmer,
Shneyerov, and Xu (2013) (focusing on identifying the selection effect, and discriminating between models of entry),
Fang and Tang (2014) (focusing on inferring bidder risk attitudes), and Li, Lu, and Zhao (2015) (focusing on testable
implications of risk aversion). The economic theory of auctions with participation costs has been developed in, for
example, Samuelson (1985), McAfee and McMillan (1987), Levin and Smith (1994), Tan and Yilankaya (2006), and
Cao and Tian (2010). See for example (Krishna, 2009, Section 2.5) for equilibrium in auctions with reserve prices.
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Henderson, List, Millimet, Parmeter, and Price (2012) and Luo and Wan (2018) explore the
impact of monotonicity of the bidding strategy in specific first-price auction models with independent
valuations on the properties of the estimator (e.g., rate of convergence, optimality, etc.), whereas this
paper explores the role of monotonicity in identification.

Haile and Tamer (2003) study the (partial) identification of bidder valuations that arises when the
econometrician has an incomplete model, specifically in an incomplete model of English auctions with
symmetric independent private values. See also Chesher and Rosen (2017) for further identification
results in a related model, based on generalized instrumental variables. Haile and Tamer (2003)
studied identification of bidder valuations based on the assumptions that bidders will not be “outbid”
and will not “overbid.”

Another important identification problem, also leading to partial identification, particularly in
certain auction formats, concerns the “missing data” problem when the econometrician does not
observe the bids of all of the players. Aradillas-Lopez, Gandhi, and Quint (2013) have established
partial identification in the important case of an ascending auction with correlated valuations, focusing
on showing partial identification of economically relevant seller profit and bidder surplus quantities
rather than the object in this paper, the overall joint distribution of valuations. Because the data
used by the identification strategy developed here includes the actions of all players, it cannot be
applied to address the identification problem studied in Aradillas-Lépez, Gandhi, and Quint (2013).
However, the identification strategy developed here does allow “missing data” on other parts of the
game, for example the “participation cost” in an auction with a participation cost. Similarly, because
the identification strategy can apply to an incomplete specification of the model, the identification
results also accommodate “missing ez ante knowledge,” for example on endogenous quantity functions
in an auction. Tang (2011) focuses on partial identification of auction revenue in first-price auctions

with common values, which also is not addressed by this paper, which assumes private values.

Example 3 (Procurement auctions, reverse auctions, oligopoly models, etc.). Models of procurement
auctions, reverse auctions, and related situations are similar to auctions, with the distinguishing
feature that the N players are bidding to sell units of an object, rather than buy units of an object.
Therefore, the valuation #; can be interpreted to be player i’s (constant) marginal cost of supplying
one unit of the object, and the “low bid” wins the market. Let L;(a) = min;z; ana j st. a;<r; @; be the

lowest bid other than the bid of player 7, among the bids from players that are below the corresponding
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reserve price. The “allocation” experienced by player i is the quantity of the object that player ¢

supplies, and therefore the allocation is negative, so the allocation rule could be

—S(a) if a; < Li(a) and a; < 7y
7i(a) = —pi(a) if a; = Li(a) and a; < r; s

0 a; > Li(a) or a; > r;,

where, similarly to Example 2, S(a) is the endogenous quantity (i.e., “demand”) given the profile of
bids a, r; is the maximum acceptable bid for player i, and p;(a) reflects the tie-breaking rule. The
“transfer” experienced by player ¢ is the payment to player . Due to the convention in this paper

that transfers are from the player, transfers are negative. For example, it could be that
—a;S(a) ifa; < Li(a) and a; <1

ti(a) = —a;pi(a) if a; = L;i(a) and a; <1y

0 a; > Li(a) or a; > r;

Some models of oligopoly competition are basically the same game, with N firms in an oligopoly having
privately known constant marginal costs of production competing to win the oligopoly market, see for
example Vives (2001, Chapter 8). In these models, the “endogenous quantity” S(a) is the demand
curve, generally depending on the lowest bid (i.e., the “realized price”). As with the endogenous
supply in Example 2, the econometrician may not know the “demand curve” and therefore again not
know 7;(a) and/or t;(a), but again the identification results do not require the econometrician to

know Z;(a) and/or t;(a).

Example 4 (Partnership dissolution). The economic theory of partnership dissolution has been
developed in Cramton, Gibbons, and Klemperer (1987), in addition to a huge subsequent literature.
There are N co-owners of an object. Prior to partnership dissolution, player i owns share r; of the
object and has valuation 6; for the object. The econometrician need not know these ownership shares.

In the “bidding game” formulation of partnership dissolution developed in Cramton, Gibbons, and
Klemperer (1987), there are initial transfers between the co-owners that depend on their ownership
shares. Since these initial transfers do not depend on valuations, they are not revealing of valuations.

In the special case of equal ownership shares, these initial transfers are zero. In any case, the
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econometrician need not observe data on these initial transfers in order to apply the identification
strategy. Indeed, the identification strategy does not rely on the game implementing such initial
transfers. These initial transfers are for purposes of satisfying the individual rationality constraint,
violation of which does not change the identification strategy in this paper, since this paper essentially
only uses the incentive compatibility constraint. See formula C' of Cramton, Gibbons, and Klemperer
(1987, Theorem 2). Then, each co-owner bids for ownership, so the action in the game are bids,
with the highest bidder winning ownership. The transfer from player ¢ is (omitting the “lump sum”
initial transfer reflecting ownership shares but not valuations): #;(a) = a; — ﬁ Zé\;i a;, so player i

transfers its bid even if it loses, and is “compensated” by the bids of the other players.

Example 5 (Public good provision). In models of the provision of public goods or public projects,
the distinguishing feature is that the allocation is the same to all players, reflecting the “public”
nature of the object. The valuation 6; reflects the private value that player i places on the public
good. The economic theory of such models has been developed in Bergstrom, Blume, and Varian
(1986), Bagnoli and Lipman (1989), Mailath and Postlewaite (1990), Alboth, Lerner, and Shalev
(2001), Menezes, Monteiro, and Temimi (2001), and Laussel and Palfrey (2003), in addition to a huge
overall literature, summarized for example in Ledyard (2006). See Lemma 1 or the discussion of
“regular” equilibrium in Laussel and Palfrey (2003) for the role of monotonicity in the strategies. Or
see the characterization of the equilibrium strategies in Menezes, Monteiro, and Temimi (2001). In
direct revelation games (e.g., Clarke (1971)-Groves (1973) games), players report their valuation, in
which case the identification problem is trivial. However, in other games, the actions of the players
are interpreted as contributions to the public good, and the object is allocated (e.g., the public
project is completed) if and only if the sum of the contributions of the players is greater than the
cost of producing the public good. The contributions may or may not be refunded if the public good
is not produced, depending on the specific game. See for example Menezes, Monteiro, and Temimi
(2001). Some models of public good provision, along the lines of Palfrey and Rosenthal (1984) (who
worked with complete information), involve a discrete and even binary action space (contribute an ex

ante fixed amount or not).

Example 6 (Strategic (non-“price taking”) market behavior). Models of strategic (non-“price taking”)
market behavior, specifically models based on multilateral double auctions, involve N; sellers (i.e.,

players that currently each own a unit of the object) and N, buyers (i.e., players that potentially
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would each like to buy a unit of the object). The buyers and sellers interact in order to trade units
of the object in exchange for monetary payments. The economic theory of such models has been
developed in Chatterjee and Samuelson (1983), Myerson and Satterthwaite (1983), and Wilson (1985),
in addition to a huge subsequent literature. See Fudenberg, Mobius, and Szeidl (2007), Kadan (2007),
or Araujo and De Castro (2009) for recent results. See Bolton and Dewatripont (2005, Chapter
7) for a textbook treatment. For monotonicity in the equilibrium strategies, see e.g., Chatterjee
and Samuelson (1983, Theorem 1) and Satterthwaite and Williams (1989a, Definition of “regular”
equilibrium) and Fudenberg, Mobius, and Szeidl (2007, Theorem 1). The case of Ny = 1 = N, has
seen particular attention, as models of bilateral trade.'' The case of Ny > 1 and N, > 1 has also
seen particular attention, as “strategic” versions of supply and demand models, in which individual
market participants do not act as competitive price takers. Although the theory literature has tended
to treat these two cases separately, the identification strategy can accommodate both cases.

The valuation of player ¢ for a unit of the object is the private information #;. The buyers announce
“bid prices” and the sellers announce “ask prices” and trade proceeds. Suppose that a(y,) is the N-th
highest announcement and a(y, 11 is the Ny + 1-st highest announcement, both among the combined
set of announcements (i.e., bids and asks) from buyers and sellers. Let z(a) = ka(n,) + (1 — k)a(n,+1)
be the resulting transaction price, where k € [0, 1] is a parameter of the model that might either be
known or unknown by the econometrician (an example of a possibly incomplete specification of the

model of the game). Then one possible allocation rule and transfer rule is

z(a) if i is a buyer and a; > z(a)
1 if a; > z(a) —z(a) if i is a seller and a; < z(a)
Ti(a) = { p;i(a) if a; = z(a) and Li(a) = { p;(a)z(a) if i is a buyer and a; = z(a)
0 if a; < z(a) —(1 —pi(a))z(a) ifiisa seller and a; = z(a)
0 otherwise,

where p;(a) reflects a tie-breaking rule with the condition that 3, 7;(a) = Nj for all a. In particular,
in the generic case of a(y,) > a(n,+1), the tie-breaking rule is such that p;(a) = 1 when a; = z(a) and
HThere are a variety of different “bilateral trade” or “bargaining” models, not all of which proceed in the same way.

For example, Merlo and Tang (2012) study identification of a different bargaining model that evidently does not fit
this allocation-transfer game framework.
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k =1 and p;(a) = 0 when a; = z(a) and k = 0. Therefore, ignoring ties by considering the generic
situation that a(y,) > a(v,+1), and because a(y,) > z(a) > a(y,+1) with at least one inequality strict,
the players with the N, highest announcements, among both buyers and sellers, are allocated a unit
of the object. The transaction price is z(a), and buyers that are allocated a unit of the object pay
z(a) and sellers that are not allocated a unit of the object receive z(a). See for example Fudenberg,
Mobius, and Szeidl (2007) for more details. These allocation and transfer rules might be unknown by
the econometrician, if the econometrician does not know k, in which case the identification strategy
involves identifying the allocation and transfer rules directly from the data.

The main assumption of the identification strategy is that the players use monotone strategies.
For buyers, this requires that buyers announce that they are willing to pay relatively more for a
unit of the object when their valuation for a unit of the object is relatively higher. For sellers, this
requires that sellers announce that they require a relatively higher payment for a unit of the object
when their valuation for a unit of the object is relatively higher. Further, equilibrium strategies
can be difficult to characterize (e.g., Leininger, Linhart, and Radner (1989) and Satterthwaite and
Williams (1989a)), making it useful that assuming a property of the equilibrium is sufficient for
the identification strategy, without needing to explicitly characterize the equilibrium solution. For
example, in one particular case (with £ = 0 and other assumptions), Satterthwaite and Williams
(1989h) show that the equilibrium strategy for the buyers is the solution to a differential equation
involving a combinatorial expression involving the unknown distribution of valuations. Chatterjee and
Samuelson (1983, Example 2) show in a specific example with Ny = 1 = N, that the strategy for the
buyer or seller can involve a “flat spot” if the support of the distribution of valuations for the buyer
is different from the support of the distribution of valuations for the seller, even with a continuous
action space. Leininger, Linhart, and Radner (1989) show that there exists equilibria in which both
buyers and sellers use step functions as their strategies. One of these equilibria is particularly simple,
with the valuations supported on [0, 1]. For some 6, a buyer with a valuation less than 8 bids 0 and a
buyer with a valuation weakly greater than @ bids 6. Conversely, a seller with a valuation weakly
less than 6 asks @ and a seller with a valuation greater than @ asks 1. The corresponding ex interim

expected allocation and ez interim expected transfer would not be differentiable.
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APPENDIX C. PROOFS

In order to economize on space, references to equations and other quantities already defined in the

body of the paper are used in the proofs.

Proof of Lemma 1. By Assumption 5 (Correct beliefs), 0;Em,(Z;(a;i,a—i)|0}) — B, (ti(a;,a—;)|0;) =
0, En, (Ti(ai,a—i(0-:))|05) — Em, (%(a;,a—i(0—;))|0}), because the distribution of A_;|¢; is the same as
the distribution of a_;(6_;)|f.. Under Assumption 7 (Weakly increasing strategy is used), and
the condition that 0,7;(a;(0;;0)),a_;) — t;(a;(0;;07),a_;) is a weakly decreasing function of a_;,
0,7 (a;(0:;07),a_;(0-;)) — t:(a;(0;;07),a_;(0_;)) is a weakly decreasing function of §_;. Under affilia-
tion, by standard properties of affiliated random variables (e.g., Milgrom (2004, Theorem 5.4.5)),
it follows that 0;Fn, (T;(a;i(0;;607),a_;)]0.) — Em,(t;(a;(0;;07),a_;)|0}) is a weakly decreasing func-
tion of 0. Alternatively, under monotonicity of 6_;|0; in the usual multivariate stochastic order,
by standard properties of the usual multivariate stochastic order (e.g., Shaked and Shanthiku-
mar (2007, Chapter 6)), it follows that ;Ep, (T;(a;(0;;607),a_:)|0}) — B, (t:(a;(0;;67),a_;)|0)) >
0; B, (Ti(ai(0:;0)),a-:)|0)) — B, (ti(ai(0:;0)),a_;)|0)) for 6, < 6. O

Proof of Lemma 2. By definition, 7;(a) = E(Z;(a)) = E(Zi(a)|4; = a;, A_; = a_;) = E(X;|A; =
ai, A_; = a_;) and #;(a) = E(t;(a)) = E(t;(a)|A; = a;, A_; = a_;) = E(T;|A; = a;, A_; = a_;). Under
the conditions of the lemma, for a = (ay,as, ..., ay) such that a; € .A? for all 7, it holds that also
a € A? and therefore 7;(a) and #;(a) are point identified by the previous expressions in terms of
conditional expectations, conditional on a discrete variable. Then, consider Ep(Z;(a;, A_;)|A; = 2})
and suppose that a; € A% and 2] € AZ Obviously, the support of A_;|(4; = z!) is a subset of
the support of A_;, and a; € A¢ by assumption, and therefore T;(a;,a_;) is point identified at
all points relevant to Ep(Z;(a;, A_;)|A; = z!). And of course the distribution of A_;|(A; = z}) is
identified since 2/ € A¢. Therefore, Ep(T;(a;, A_;)|A; = z) is point identified. It is similar for
Ep(Ti(zi, A)|A; = 20), Ep(ti(a;, Ay)|A; = 20), and Ep(t;(z;, A_;)|A; = z!'). Therefore, there is

game-structure identification of differences per Definition 4. 0

Proof of Theorem 1. By Assumption 4 (Optimal strategy is used), Equation 8 is a necessary condition
for any action @;(6;) used by player 7. Then, under Assumption 5 (Correct beliefs), Equation 9 is an
equivalent necessary condition. Then, under Assumptions 6 (Counterfactual ex interim expected utility

maximization problem has a solution), 7 (Weakly increasing strategy is used), and 8 (Monotone effect
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of counterfactual beliefs on utility), Equation 13 is valid. Under Assumption 7 (Weakly increasing
strategy is used), given that 2} < a;(6;) < z! are all used in the data, all elements of ©;(z]) are less
than all elements of ©;(a;(#;)), and all elements of ©;(a;(6;)) are less than all elements of ©;(z),
where O;(-) is defined in Equation 10. In particular, 6; € ©;(a;(6;)), all elements of ©;(z]) are less than
0;, and 6; is less than all elements of ©;(2/). Then, combining Equations 11 and 12 with Equation
13, Equation 14 is valid. Equations 15, 16, 2, and 3 follow immediately, using Assumption 9 (Known
bounds on valuations).

Now, for a given a;, consider any 0; < ®p,(a}) with a} < a;,a, € A%. If # is any valuation consistent
with using action a}, then 6, > ®,(a’). Moreover, since a; € A¢ by construction, there is indeed some
valuation 6 that uses action a. By Assumption 7 (Weakly increasing strategy is used), the action
used by valuation 6; is weakly less than the action used by valuation 0, > ®ri(a)) > 0;, so the action
used by valuation 6; is weakly less than a). Moreover, since 6; # ®;(a}) by construction, valuation
0; cannot use action a;. Consequently, player ¢ with valuation 0; must use an action strictly less
than a}. By the contrapositive, any equilibrium action weakly greater than a; must correspond to a
valuation weakly greater than ®;(a}). Consequently, because a) < a;, the valuation 6; corresponding
to the use of equilibrium action a; must be weakly greater than ®;(a}). Since the above holds for
any a; < a;,a, € A?, the valuation 6; corresponding to the use of equilibrium action a; must be
weakly greater than supy <, eas Pri(a;). Consequently, supy <,, areaa Pri(a;) is a lower bound for
the valuation corresponding to a;. Similarly, infy/>, o e a2 ®y;(al) is an upper bound for the valuation
corresponding to a;.

Therefore, considering the joint distribution of 6 = (0, 6,,...,0y) and corresponding observed
actions A = (Ay, Ag, ..., Ayn), it holds for all realizations that, for each i € {1,2,..., N}, T1;(4;) <
0; < Tyi(A;). Consequently, the partial identification result in the usual multivariate stochastic order

follows from Shaked and Shanthikumar (2007, Theorem 6.B.1).

Independent valuations Under Assumption 2, the following adjustments are made to the proof.
Under Assumption 2, Equation 8 need not condition on 0; since beliefs do not depend on valuation.
Similarly, Equation 9 need not condition on 0;. Thus, Equations 5 and 6 are valid bounds for the
valuation, even without Assumptions 6 (Counterfactual ex interim expected utility maximization
problem has a solution) and 8 (Monotone effect of counterfactual beliefs on wutility). Then, by

arguments similar to those used previously in the proof of Theorem 1, the valuation corresponding to
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a; must be between SUPy/ <4, oread Zri(a;) and infyrs,, o aa Zvila;). Thus, the valuation corresponding
to a; must be between I'r;(a;) and Tyi(a;) defined in Equation 7.

To establish game-structure identification of differences, Ep(X;|A; = a;) = Ep(T;(A;, A_)|A; =
a;) = Ep(Ti(a;, A)|A; = a;) = Ep(Ti(a;, A_;)), where the first equality holds by definition of the
game (and resulting allocations), the second equality holds by standard properties of conditioning and
the law of iterated expectations (with respect to any randomness in the allocation), and the third

equality holds because the actions of different players are independent. It is similar for Ep(T;|A; =
ai) = Ep(fi(ai, A—z)) * O

Proof of Theorem 2. Let T';(-) defined on A¢ be a strictly increasing function such that T'z;(-) <
() < Tyi(v). At least one such I';(+) does exist. Specifically, under the true data generating
process, per Assumption 7 (Weakly increasing strategy is used) there are weakly increasing strategies
a;(0;) that generate the data. Then, let T';(a;) = midpoint{6; : a;(6;) = a;} defined on a; € A¢, the
midpoint of the interval of valuations that uses action a; per the discussion of Assumption 7 (Weakly
increasing strategy is used). By definition, it must be that T'z;(-) < T;(-) < Tyi(-) on A¢. Consider
any pair a; € A¢ and a; € A?. The corresponding valuations ¢ = I';(a}) and 6; = I';(a;) are such
that valuation 6} uses action a; and valuation 6; uses action a;. Since a; # a, it must be that 6; # 0.
and by Assumption 7 (Weakly increasing strategy is used), it must be that 6; < 8. Consequently, it
must be that T;(a;) = 6; < 0. = T;(a), so T;(+) is strictly increasing on A?.

Consider the distribution of actions according to conjectured strategies I'; *(+) defined on the support
of I';(A;) where A; ~ P(A). Since I';(-) is strictly increasing on A¢, I'; '(-) is strictly increasing on the
support of I';(4;). The distribution of actions is therefore (I'7 (1 (A;)), Iy ' (T2(A2)), ..., ¥ (Tn(An))) =
(A1, Ag, ..., AN).

Now consider a realization from the distribution of valuations that is (I'1 (a1 ), 2(az), ..., Ty (ay)) for
some a € A%, which by construction uses the action a in the conjectured equilibrium. For each player 1,
the utility maximization problem is to maximize I';(a;) Er, (Ti (2, a—;)) — En, (t;(z:, a—;)). Specifying the
player to have correct beliefs, whereby II;(a_;) = P(A_;) given the distribution of actions is the same
as in the real data by the above, this is the same as maximizing I';(a;) Ep(Ti(z;, A—i)) — Ep(ti(z:, A_;)).
The action that this valuation actually uses would satisfy the condition of utility maximization exactly
when T';(a;) Ep(Z;(a;, A_;)) — Ep(ti(ai, A)) > Ti(a;) Ep(Ti(zi, A_;)) — Ep(ti(z;, A_;)) for all z; € A;.

For z; € {A; : Ep(Ti(ai, A—y)) — Ep(Ti(2, A—;)) > 0}, Ti(a;) > I'ii(a;) > gjglﬁ?ﬁjigigig(f;ﬁj’))))
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by Equations 5, 6, and 7. Consequently, after re-arranging that inequality, the utility from action

a; weakly exceeds the utility from action z;. For z; € {A; : Ep(T;(a;, A_y)) — Ep(Ti(zi, A_y)) < 0},

Fi(a;) < Tyila;) < gj gzgzzg:z;g:gi gi(f;i’ﬁ’_i)))) by Equations 5, 6, and 7. Consequently, after re-
arranging that inequality, the utility from action a; weakly exceeds the utility from action z;. For
zi € {A; : Ep(Ti(a;, A_;)) — Ep(Ti(2;, A_;)) = 0}, since a; is used in the data and therefore maximizes
utility for some valuation, it must be that —Ep(¢;(a;, A_;)) > —Ep(t;(z;, A_;)), which also suffices for
the utility from action a; to weakly exceed the utility from action z; when the valuation in particular
is T;(a;).

For the last part of the result, let I';(-) defined on A¢ be a strictly increasing function such
that I'z;(1) < I'y(+) < T'yi(¢). Per above, at least one such function exists. Then let f‘l() =
al'i(+) + (1 — a)T'z;(+) for some o € (0,1). Clearly, T'z;(-) < Ti(-) < T'pi(+). Moreover, clearly Ty(-)
is strictly increasing because I';(+) is strictly increasing and I'z;(-) is weakly increasing. Further,
0 < Ty(-) = Tpi() = a(Ti() = Tui(-) < @ (Ou; — Ori), 50 sup, e, (Ti(ai) = Tri(a;)) < e by taking
— small enough. Similar arguments based on [i(-) = ali(-) + (1 — a)Ty;i(-) establish that

€
a < 60,-6

0< SUDg, c4; (FUl(CLZ) — Fl(az)) < €. U

Proof of Theorem 3. From Assumptions 10 (Continuous action space and no point masses in dis-
tribution of actions), 12 (Differentiable ex interim expected allocation and transfer), 13 (Game-
structure identification of derivatives), and 14 (Non-zero marginal expected allocation), let & =
(int(A))C UE4UE L UE,, and € =TI, &;. Tt follows that P(A € £) =0. Then P(f € B) = P( €
B,Ac&°)+Ple B AcE)=P0 € B,Ac&Y) =Pl e BJA € EY) for any Borel set B, so it is
enough to restrict the identification problem to recovering the distribution of @ from actions in £¢.
By Assumptions 3 (Action space is ordered), 4 (Optimal strategy is used), 10 (Continuous action
space and no point masses in distribution of actions), and 12 (Differentiable ez interim expected
allocation and transfer), Equation 22 is the necessary condition for any action used by player i in

AdNint(A;) NES:

O0FEn, (zi(ai, a—:)|0:) _ 0Eq,(ti(ai, a—;)|6:)

22 =0.
( ) QZ 0ai 8&1' 0

a;=a;(0;)
By Assumptions 1 (Dependent valuations), 7 (Weakly increasing strategy is used), 10 (Continuous
action space and no point masses in distribution of actions), and 11 (Smooth distribution of valuations),

conditioning on 6; is equivalent to conditioning on A; = a;(6;), because if two distinct valuations use
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the same action the entire interval between those valuations would also use the same action, resulting
in a point mass in the distribution of actions by Assumption 11 (Smooth distribution of valuations).

So by Assumption 5 (Correct beliefs), Equation 23 is valid for actions in Af Nint(A;) N ES:

C0Ep(@i(ai, A-i)|As) _ 0Ep(ti(ai, Ay)|4;)

2 =0.
( 3) 91 8ai 861@ 0

a; :Al

ai:Ai
Under Assumption 14 (Non-zero marginal expected allocation), Equation 24 is valid for all actions

used by player ¢ in A¢ Nint(A;) NES N ES,:
(24) 0; = Wy(A,).

By Assumption 13 (Game-structure identification of derivatives), W¥;(a;) is point identified for all

a; € A Nint(A;) NES N ES,, NES,. Therefore, the identification result obtains.

Independent valuations Under Assumption 2, the following adjustments are made to the proof.
Equation 22 need not condition on 6; since beliefs are independent of valuation. Similarly, Equation

23 s valid without conditioning on A;. * 0]

APPENDIX D. ON THE ROLE OF EQUILIBRIUM ASSUMPTIONS

Bayes Nash equilibrium requires that all players act rationally given beliefs (Assumption 4) and
have correct beliefs (Assumption 5), so that each player chooses an action that is a best response to
the distribution of actions of the other players. This assumption of equilibrium is completely standard,
since it is reasonable in very many settings, but in some settings it may be too strong.'” In the context
of auction models, for example, it might be that some “novice” bidders have incorrect beliefs about
the other bidders, whereas “experienced” bidders might have correct beliefs about the other bidders.
Similarly, it might be that the “novice” bidders do not have sufficient understanding or experience
with the auction format to bid the optimal amount given their beliefs, whereas “experienced” bidders
might have that sufficient understanding and experience to bid the optimal amount given their beliefs.
The difference between “novice” and “experienced” might be due to learning from participating

in previous auctions, or some other reason that is observable by the econometrician, so that the

2[dentification in games relaxing the assumption of equilibrium, or related questions, has been considered in Aradillas-
Lépez and Tamer (2008), Haile, Hortagsu, and Kosenok (2008), Kline and Tamer (2012), Kline (2015, 2018), Syrgkanis,
Tamer, and Ziani (2018), and Magnolfi and Roncoroni (2023). Kline (2018) includes a discussion of the tradeoffs
between equilibrium assumptions and assumptions on the data, for identification in settings like entry games. See
Maskin (2011) for a commentary on Nash equilibrium.
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econometrician can distinguish which players are “novices” and which players are “experienced.” For
example, in electricity markets with data that includes typically unobserved valuations, which makes
it possible to test bidder optimality, Hortagsu and Puller (2008) find that “large” firms are more
strategically sophisticated than “small” firms.

It is an immediate consequence of the identification strategy that it is possible to conduct exactly
the same identification analysis for any player that has correct beliefs and acts rationally given those
correct beliefs, regardless of whether other players have correct beliefs and/or act rationally given
those beliefs. When relaxing the assumption of equilibrium, only a specific player i is assumed to
have correct beliefs and act rationally given those beliefs. Assumptions that apply to all players
are replaced by similar assumptions that apply only to a particular player 7. For example, player ¢
might have correct beliefs that the other players are “irrational.” Then, the identification result is
the “player ¢ part” of Theorem 1, both in terms of assumptions and result. Moreover, assuming that
players ¢ and j both satisfy the assumptions, it is possible to formulate the “player ¢ and j part” of
the identification results, establishing identification of the joint distribution of their valuations.

If it were assumed that all players draw valuations from the same marginal distribution (i.e.,
“symmetric private values”), then identification of one player’s marginal distribution of valuations is
sufficient to identify all players’ marginal distributions of valuations. If it were further assumed that
player valuations are independent (i.e., “symmetric independent private values”), then identification
of one player’s marginal distribution of valuations is sufficient to identify the joint distribution of
all players’ distributions of valuations. Of course, it may be implausible to assume that only some
players have correct beliefs and act rationally given those beliefs, while also assuming that all players
draw valuations from the same marginal distribution. However, if for example all players have the
same marginal distribution of valuations, but some players just happen to have more “experience”
with the game for reasons unrelated to their valuation, those simultaneous assumptions may be

plausible.

APPENDIX E. SUFFICIENT CONDITIONS FOR GAME-STRUCTURE IDENTIFICATION OF DERIVATIVES

This appendix provides one sufficient condition for game-structure identification of derivatives used
in Appendix A, formalizing the idea that game-structure identification of derivatives follows from
standard results on identification and estimation of conditional expectations. It is clear that other

sufficient conditions also exist.
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Lemma 3 (Sufficient conditions for game-structure identification of derivatives). Suppose that
Assumptions 1 (Dependent valuations) and 10 (Continuous action space and no point masses in
distribution of actions) are satisfied. Let an action a; € A; be given, and suppose that the following
conditions are true. It holds that a; € A%, and there is a set S containing a; such that A2 NS
is a non-degenerate interval and such that the econometrician can point identify the conditional
expectations Ep(X;|A; = al, Ay = a_;) and Ep(Ti|A; = al, A_; = a_;) for all a; € AYNS and
a_; € A4 (a}), where A% (a}) has probability 1 according to the distribution A_;|(A; = a;). The
distribution A_;|(A; = a;) is point identified. If a; € int(A;), then a; € int(A?NS). The data
is P(A,X,T). Then, whether or not W¥(a;) and Vi(a;) exist is point identified. Fxists means,
by definition, that the limit corresponding to the definition of the derivative exists. Moreover, if
U¥(a;) and Wi(a;) exist, then there is game-structure identification of derivatives per Definition 5.
Identification of W¥(a;) and Wi(a;) is constructive, and given by the existence and values of the limits
corresponding to expressions in Fquation 25:

(25)

T aEP EP Xl Az‘:aiyA—i Az:Z 8Ep EPEAi:(li,A_i Al:Z
wi() = PEPEPOUA =0 AN =2)| gy OBl = a A A=)

This is based on the fact, in connection with standard results on identification and estimation of
conditional expectations, that 7;(-) and #;(-) are identifiable quantities based on the relationships
Ti(ai,a_;) = Ep(X;|A; = a, A_; = a_;) and t;(a},a_;) = Ep(T;|A; = a, A_; = a_;). For example,
kernel regression estimators of conditional expectations are consistent for almost all realizations of the
conditioning variable, with respect to the distribution of the conditioning variable (e.g., Stone (1977),
Devroye (1981), or Greblicki, Krzyzak, and Pawlak (1984)). This is also based on standard results
on identification and estimation of the conditional distribution A_;|(A4; = a;). For example, kernel
estimators of conditional distributions are consistent for almost all realizations of the conditioning
variable, with respect to the distribution of the conditioning variable, and all realizations of the
conditioning variable if A_;|(A; = a;) is suitably continuous in a; (e.g., Stute (1986), Owen (1987),
and Hall, Wolff, and Yao (1999)). Therefore, the most practically important part of the assumptions
relates to the support of the data. The support condition requires that a; € A¢ (in addition to
a; € A;) and that there is a set S containing a; such that A% NS is a non-degenerate interval, with
a; € int(A¢NS) if a; € int(A;). The support condition is used to identify the derivatives based

on limits along a sequence of a; approaching a;, where a, are taken in A% N'S. The condition that
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a; € int(A¢NS) if a; € int(A;) is used to guarantee that the usual two-sided derivative can be

identified (to exist), when a; is such that the two-sided derivative is relevant.

Proof of Lemma 3. The definitions of ¥#(-) and Wi(-) are given in Equation 17. By definition,
Zi(a) = E(Zi(a)) = E(Ti(a)|A; = a;, Ay = a_;) = BE(Xi|A; = a;, A_; = a_;) and t;(a) = E(t;(a)) =
E(fi(a)]Ai =a;,A_; = a_;) = E(T;|A; = a;, A_; = a_;). Therefore, by substitution, the expressions
in Equation 25 are valid. Let a; € A¢ be given, and let S be given with the stated properties. Let
a, € AN S. By assumption, Ep(X;|4; = al, A_; = a_;) and Ep(T}|A; = a}, A_; = a_;) are point
identified for all a_; in a probability 1 subset of the support of A_;|(A; = a;). Therefore, given that
the distribution of A_;|(A; = a;) is point identified by assumption, Ep(Ep(X;|A; = a}, A_;)|A; = a;)
and Ep(Ep(T;|A; = a, A_;)|A; = a;) are point identified. Consequently, the existence and values
of U¥(a;) and Wi(a;) are point identified by the existence and values of the limits corresponding to

expressions in Equation 25. 0
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